An Empirical Comparison of Graph Laplacian Solvers

Kevin Deweese1 Erik Boman2 John Gilbert1

1Department of Computer Science
University of California, Santa Barbara

2Scalable Algorithms Department
Sandia National Laboratories

Algorithm Engineering and Experiments, 2016
Our focus: Solve the system of equations $Lx = b$ where L is a graph Laplacian matrix.
Applications

Graphs with regular degree structure, 2D/3D meshes

- Finite element analysis
 - Electrical and thermal conductivity
 - Fluid flow modeling
- Image processing
 - Image segmentation, inpainting, regression, classification

Graphs with irregular degree, problems in network analysis

- Maximum flow problems
- Graph sparsification
- Spectral clustering
Applications

Graphs with regular degree structure, 2D/3D meshes
- Finite element analysis
 - Electrical and thermal conductivity
 - Fluid flow modeling
- Image processing
 - Image segmentation, inpainting, regression, classification

Graphs with irregular degree, problems in network analysis
- Maximum flow problems
- Graph sparsification
- Spectral clustering
Some applications use symmetric diagonally dominant (SDD) matrices
Slightly more general, allows for positive off-diagonal entries
Can be reduced to solving a Laplacian linear system
SDD Solvers With Good Asymptotic Complexity

- Linear times polylog. Spielman and Teng, 2006
- Nearly $m \log n$. Koutis, Miller, and Peng, 2011
- mostly theoretical results, few experiments
Our Goal

- Perform a comprehensive study of existing Laplacian solvers
- Select a set of test problems that are relevant/challenging
- Select performance metrics for evaluating current and future Laplacian solver performance
- Ongoing work, plan to update it with new solvers, new test problems
Test Graphs

- University of Florida Sparse Matrix Collection [Davis]
 - Irregular degree graphs
 - 10K edges to 4M edges
 - 2D/3D mesh-like graphs
 - 30K edges to 7M edges

- Block two-level Erdös Rényi (BTER) [Seshadhri et al.]
 - Designed to model web graphs with realistic degree distributions and clustering behavior

- Image segmentation graphs [Felzenszwalb and Huttenlocher]
 - Pixels=vertices, edge weights represent dissimilarity between pixel values
 - 300K edges to 7M edges
Solution Methods

- **Direct methods**
 - Solve in a finite number of operations
 - Cholesky factorization
 - Sometimes expensive in time and memory use

- **Iterative methods**
 - Form a sequence of improving approximations
 - Conjugate gradients (CG)
 - Convergence depends on matrix spectrum, bounded in terms of condition number $\kappa(A) = \frac{\lambda_n(A)}{\lambda_1(A)}$
 - Typically used with a preconditioner to improve the condition number

- **Multilevel**
 - Approximate solution on a coarser problem, occasionally correct on original
 - Form recursive hierarchy of approximations
Solution Methods all from [Trilinos]

- **Direct Solvers**
 - Cholesky factorization
 (Cholmod [Davis])
- **CG with single-level preconditioner**
 - Jacobi
 - Incomplete LU Factorization (ILU)
 - Spanning trees
- **CG with multi-level preconditioner**
 - Algebraic Multigrid (AMG)
Solution Methods all from [Trilinos]

- Direct Solvers
 - Cholesky factorization (Cholmod [Davis])
- CG with single-level preconditioner
 - Jacobi
 - Incomplete LU Factorization (ILU)
 - Spanning trees
- CG with multi-level preconditioner
 - Algebraic Multigrid (AMG)
Solution Methods all from [Trilinos]

- **Direct Solvers**
 - Cholesky factorization (Cholmod [Davis])
- **CG with single-level preconditioner**
 - Jacobi
 - Incomplete LU Factorization (ILU)
 - Spanning trees
- **CG with multi-level preconditioner**
 - Algebraic Multigrid (AMG)
Solution Methods all from [Trilinos]

- **Direct Solvers**
 - Cholesky factorization (Cholmod [Davis])

- **CG with single-level preconditioner**
 - Jacobi
 - Incomplete LU Factorization (ILU)
 - Spanning trees

- **CG with multi-level preconditioner**
 - Algebraic Multigrid (AMG)
Solution Methods all from [Trilinos]

- Direct Solvers
 - Cholesky factorization
 (Cholmod [Davis])
- CG with single-level preconditioner
 - Jacobi
 - Incomplete LU Factorization
 (ILU)
 - Spanning trees
- CG with multi-level preconditioner
 - Algebraic Multigrid (AMG)
Solution Methods all from [Trilinos]

- Direct Solvers
 - Cholesky factorization (Cholmod [Davis])
- CG with single-level preconditioner
 - Jacobi
 - Incomplete LU Factorization (ILU)
 - Spanning trees
- CG with multi-level preconditioner
 - Algebraic Multigrid (AMG)
Experimental Design

- $Lx = b$ solved on problems in 4 test sets
- b randomly generated
- Solutions found to within residual tolerance of 10^{-9}
- Mostly used default solver parameters
Performance Metrics

- Number of Iterations
- Setup Time (one time work)
- Per-solve Time (every time work)
- Total Time (Setup+Per-solve)
- Memory Usage
Setup + Per-solve (Irregular)

UF Irregular Graphs

BTER Graphs
Setup + Per-solve (Mesh-like)

UF Mesh-like Graphs

Image Segmentation Graphs

Fraction of problems within τ of best

Cholesky
Jacobi
ILU
Tree
Multilevel
Iterations (Irregular)

UF Irregular Graphs

BTER Graphs

K. Deweese, J. Gilbert, E. Boman
An Empirical Comparison of Graph Laplacian
ALENEX 2016 14 / 20
Iterations (Mesh-like)

UF Mesh-like Graphs

Image Segmentation Graphs

K. Deweese, J. Gilbert, E. Boman
An Empirical Comparison of Graph Laplacian Solvers
ALENEX 2016
Per-solve Time (Irregular)

UF Irregular Graphs

BTER Graphs

Cholesky
Jacobi
ILU
Tree
Multilevel
Per-solve Time (Mesh-like)

UF Mesh-like Graphs Image Segmentation Graphs

K. Deweese, J. Gilbert, E. Boman An Empirical Comparison of Graph Laplacian

ALENEX 2016 17 / 20
Summary of Results

- Relative solver performance is consistent within test sets, but very different between test sets.
- Multigrid does well on mesh-like problems; single-level preconditioners do well on irregular problems.
- BTER problems are easier for the iterative methods, more difficult for direct methods.
- The irregular problems are better conditioned, simple preconditioners like Jacobi do well.
Future Work

- Incorporate additional solvers
 - Multigrid methods designed for irregular graphs
 - Decide how to incorporate solvers outside Trilinos

- Add additional test problems

- Understand how graph structure -> condition number, solver behavior