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Abstract

We consider the computation of shortest paths on Graphic Processing Units (GPUs).
The blocked recursive elimination strategy we use is applicable to a class of algorithms
(such as all-pairs shortest-paths, transitive closure, and LU decomposition without piv-
oting) having similar data access patterns. Using the all-pairs shortest-paths problem as
an example, we uncover potential gains over this class of algorithms. The impressive
computational power and memory bandwidth of the GPU make it an attractive plat-
form to run such computationally intensive algorithms. Although improvements over
CPU implementations have previously been achieved for those algorithms in terms of
raw speed, the utilization of the underlying computationalresources was quite low. We
implemented a recursively partioned all-pairs shortest-paths algorithm that harnesses
the power of GPUs better than existing implementations. Thealternate schedule of
path computations allowed us to cast almost all operations into matrix-matrix multi-
plications on a semiring. Since matrix-matrix multiplication is highly optimized and
has a high ratio of computation to communication, our implementation does not suffer
from the premature saturation of bandwidth resources as iterative algorithms do. By
increasing temporal locality, our implementation runs more than two orders of magni-
tude faster on an NVIDIA 8800 GPU than on an Opteron. Our work provides evidence
that programmers should rethink algorithms instead of directly porting them to GPU.

Key words: All-pairs shortest paths, Gaussian elimination, graphical processing unit,
semiring, matrix multiplication, graph algorithm, shortest path, linear algebra

1. Introduction

The massively parallel nature of GPUs makes them capable of yielding theoret-
ically much higher GFlops rates than current state-of-the-art CPUs. GPU perfor-
mance also grows much faster than CPU performance due to specialized explicit paral-
lelism. The amount of computational power to be harvested has also attracted the high-
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performance computing (HPC) community, and we have seen many scientific applica-
tions successfully implemented with significant performance gains on the GPU [1, 2].

Implementing HPC applications to run on a GPU requires significant expertise,
even with the recently introduced C-like APIs such as Nvidia’s Cuda platform [3].
The key to performance is to hide the data access latency by having many threads
on the fly. The performance is usually fragile and requires careful craftmanship from
the programmer’s side. It is up to the programmer to make surethat the registers
and other levels of cache are neither underutilized nor over-pressured. Several papers
are devoted to the issue of achieving the right balance to getoptimal performance on
GPUs [4, 5], relying on novel programming techniques that are not necessarily intuitive
to the existing HPC programmer.

An important class of algorithms with triple nested loops, which will be subse-
quently mentioned as Gaussian Elimination (GE) based algorithms, have very similar
data access patterns. Examples include LU decomposition without pivoting, Cholesky
factorization, all-pairs shortest paths (APSP), and transitive closure. The similarity
among those problems has led researchers to approach them ina unified manner. For
example, the Gaussian Elimination Paradigm of Chowdhury and Ramachandran pro-
vides a cache-oblivious framework for these problems [6]. In this paper, we specifically
focus on the APSP problem because it usually operates on single precision floating
point data, making it suitable to current generation GPUs. On the contrary, factor-
izations such as LU and Cholesky require double precision arithmetic that was not
available on the GPUs until very recently (with AMD FireStream 9170 and Nvidia
GeForce GTX 280). Even now, the double precision performance is 4-8 times slower
than single precision, and the limited global memory of current generation GPUs dis-
courage the use of double precision floating point numbers. Furthermore, numerical
LU decomposition without pivoting is unstable [7] at best (it may not even exist), and
pivoting strategies on the GPU are beyond the scope of this paper. Volkov and Demmel
did an excellent job of implementing LU, QR, and Cholesky factorizations on the GPU,
albeit in single precision [5]. It is worth noting that even though our implementation
computes only the distance version of the APSP problem, it ispossible to obtain the
actual minimal paths, at the cost of doubling the memory requirements, by keeping a
predecessor matrix.

Our two main contributions in this paper are:

1. Recursive partitioning is used as a tool to express a different schedule of path
computations that allows extensive use of highly optimizedmatrix-matrix opera-
tions. Specifically, we use matrix multiplication on semirings as a building block
for GE based algorithms. By doing so, we increase data locality, which is even
more important for high performance computing on the GPU than on the CPU

2. As a proof of concept, we provide an efficient implementation of the APSP al-
gorithm on the GPU that is up to 480x faster than our referenceCPU implemen-
tation, and up to 75x faster than an existing GPU implementation on a similar
architecture.

Locality of reference has always been an issue in algorithm design, and it will
be even more important with GPUs. This is because stream processors, such as GPUs,



achieve efficiency through locality [8]. Our work highlights the importance of recursion
as a technique for automatically creating locality of reference.

As minor contributions, we give an alternate (arguably simpler) proof of correctness
based on path expressions for the recursively partitioned APSP algorithm. On the
GPU, we compare iterative, and recursive versions of the same algorithm and provide
insights into their performance difference through micro benchmarks. Therefore, we
provide evidence that Level 3 BLAS [9] routines on semiringscan be used to speed
up certain graph algorithms. Finally, we compare different CPUs and GPUs on their
power efficiency in solving this problem.

The remainder of this paper is organized as follows. Section2 describes the al-
gorithms based on block-recursive elimination, starting from the well-known Gaussian
Elimination procedure and using it as an analogy to explain block-recursive elimination
on other algebraic structures. Most specifically, it shows how block-recursive elimina-
tion can be used to solve the all-pairs shortest-paths problem. Section 3 is devoted to
GPU programming on the Cuda platform, showing difficulties and important points to
achieve high performance on GPUs. Section 4 describes our implementation and eval-
uation strategies, and reports on the results of our experiments. Section 5 offers some
concluding remarks.

2. Algorithms Based on Block-Recursive Elimination

Gaussian elimination is used to solve a system of linear equationsAx = b, whereA
is ann × n matrix of coefficients,x is a vector of unknowns, andb is a vector of con-
stants. Recursive blocked LU factorization is an efficient way of performing Gaussian
elimination on architectures with deep memory hierarchies[10, 11]. This is mostly due
to its extensive use of matrix-matrix operations (Level 3 BLAS [9]) that are optimized
for the underlying architecture. LetA and its factorsL andU be partitioned as
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Then, the block-recursive LU decomposition without pivoting can be written as

L11,U11←LU(A11)

U12←L11\A12 (2)

L21←A21/U11

L22,U22←LU(A22 − L21U12).

In this pseudocode,LU is the recursive call to the function itself,\ and/ denote
triangular solve operations with multiple right hand sides(matrix division on the left
and on the right, in Mr notation).

LU factorization operates on the field of real numbers, but the same algorithm
can be used to solve a number of graph problems, albeit using adifferent algebra.
Specifically, closed semirings provide a general algebraicstructure that can be used to



solve a number of path problems on graphs [12, 13]. A semiringhas all the properties
of a ring, except that there might be elements without an additive inverse. One practical
implication is that fast matrix multiplication algorithmsthat use additive inverses, such
as the Strassen algorithm [14] and the Coppersmith-Winograd algorithm [15], do not
apply to matrices over semirings.

A closed semiring is formally denoted by (S,⊕,⊗,0,1), where⊕ and⊗ are binary
operations defined on the setS with identity elements 0 and 1 respectively. Fletcher [16]
gives a complete definition of a closed semiring. Two important semirings used in this
work are theBoolean semiring, formally defined as ({0,1},∨,∧,0,1) and thetropi-
cal semiring, formally defined as (R+,min,+,∞,0). A closed semiring is said to be
idempotent if a ⊕ a = a for all a ∈ S. Although idempotence of the semiring is not
a requirement for the solution of path problems on graphs [16], the correctness of our
in-place algorithms relies on idempotence. Both the Boolean semiring and the tropical
semiring are idempotent, as min(a, a) = a for all a ∈ R

+, and 0∨ 0 = 0, 1∨ 1 = 1.

2.1. The All-Pairs Shortest-Paths Problem
The all-pairs shortest-paths (APSP) is a fundamental graphproblem. Given a di-

rected graphG = (V, E) with verticesV = {v1, v2, ..., vn} and edgesE = {e1, e2, ..., em},
the problem is to compute the length of the shortest path fromvi to v j for all (vi, v j)
pairs. APSP corresponds to finding the matrix closureA∗ =

∑∞
i=0 Ai =

∑n
i=0 Ai =

I ⊕ A ⊕ ... ⊕ An on the tropical semiring. Note that we were able to avoid the problems
with the infinite sum by converting it to a finite sum, becauseAn+i = An for i > 0 in
any idempotent semiring.

APSP is the focus of this paper among the set of GE based algorithms due to its
practical importance and the lack of fast implementations on the GPU. All the algo-
rithms discussed in this paper take the adjacency matrixA of the graph, whereA(i, j)
represents the length of the edgevi → v j, as the input. They outputA∗, whereA∗(i, j)
represents the length of the shortest path fromvi to v j. Edge weights can be arbitrary
(positive, negative, or zero), but we assume that there are no negative cycles in the
graph. Also, the cost of staying at the same vertex is zero, i.e., A(i, i) = 0. If not, we
can delete any edge of the formA(i, i) , 0 as it will certainly not contribute to any
shortest path. This is because shortest paths are simple when there are no negative
cycles.

The standard algorithm for solving the APSP problem is the Floyd-Warshall (FW)
algorithm. The pseudocode for the FW algorithm, in standardnotation and in linear
algebra notation, are given in Figures 1 and 2. It is especially well-suited for dense
graphs due to itsO(n3) complexity. It is a dynamic programming algorithm that con-
sists of a triply nested loop similar to matrix multiplication. In fact, computing the
APSP problem is computationally equivalent to computing the product of two matrices
on a semiring [12]. However, the order of the loops cannot be changed arbitrarily as
in the case of matrix multiplication. In the linear algebra sense, the algorithm com-
putes the outer product of thekth row and thekth column, and does rank-1 updates
on the whole matrix, fork = 1,2, ..., n. The order of the outer product updates cannot
be changed, but one is free to compute the outer product in anyorder. This means
that thek-loop should be the outermost loop, and the other loops can befreely inter-
changed. Although the added constraint on the order of loopshinders some of the loop-



A∗ : R
N×N = FW(A : R

N×N)

1 for k ← 0 to N − 1
2 do for i← 0 to N − 1
3 do for j← 0 to N − 1
4 do A(i, j)← min(A(i, j), A(i, k) + A(k, j))
5 A∗ ← A

Figure 1: FW algorithm in the standard notation

A∗ : R
N×N = FW(A : R

N×N)

1 for k ← 0 to N − 1
2 do A← A ⊕ A(:, k) ⊗ A(k, :) � Algebra on the (min,+) semiring
3 A∗ ← A

Figure 2: FW algorithm in linear algebra notation

interchange optimizations that are applied to matrix multiplication, automatic program
generators for the FW algorithm have been shown to provide formidable speedups [17].

For sparse graphs, Johnson’s algorithm [18], which runs Dijkstra’s single-source
shortest paths algorithm from every vertex (after some preprocessing that lets the algo-
rithm run on graphs having edges with negative weights), is probably the algorithm of
choice for an implementation on the CPU. However, as we demonstrate in Section 4,
the GE based algorithm clearly outperforms both the FW algorithm and Johnson’s al-
gorithm when implemented on the GPU.

For unweighted graphs, it is possible to embed the semiring into the ring of inte-
gers and use a fast, sub-cubic matrix multiplication algorithm such as Strassen’s [14].
For an undirected and unweighted graph, Seidel [19] gives aO(M(n) lg n) algorithm,
whereM(n) is the time to multiply twon × n matrices on the ring of integers. This
elegant algorithm repeatedly squares the adjacency matrixof the graph. However, it
is not currently known how to generalize Seidel’s algorithmto weighted or directed
graphs [20].

2.2. Recursive In-Place APSP Algorithm

The closure of a matrix can be computed using an algorithm similar to recursive
Gaussian elimination without pivoting. It is guaranteed toterminate on a closed semir-
ing like the tropical semiring. The only subroutine of this algorithm is matrix multi-
plication on a semiring. Then-by-n adjacency matrix is recursively partitioned into
four equal-sizedn/2-by-n/2 submatrices as before; the pseudocode for the algorithm
is shown in Figure 3. We use juxtaposition (AB) to denote the multiplication ofA and
B on the semiring.β is the threshold after which the algorithm performs iterative FW



A∗ : R
N×N = APSP(A : R

N×N)

1 if N < β
2 then A← FW(A) � Base case: perform iterative FW serially
3 else

4 A =
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5 A11← APSP(A11)
6 A12← A11A12

7 A21← A21A11

8 A22← A22 ⊕ A21A12

9 A22← APSP(A22)
10 A21← A22A21

11 A12← A12A22

12 A11← A11 ⊕ A12A21

Figure 3: Pseudocode for recursive in-place APSP

serially instead of recursing further. The algorithm does not requiren to be even. Ifn
is odd, the same decomposition in (1) works with⌊n/2⌋ and⌈n/2⌉.

Both the original FW implementation given in Figures 1 and 2 as well as the recur-
sive algorithm given in Figure 3 can be easily extended to obtain the actual minimal
paths. In this case, an additional integer matrixΠ of predecessor vertices is maintained.
Initially, Π(i, j) ← i for all i. It is updated whenever a previously unknown path with
shorter length is discovered, i.e.,Π(i, j)← k wheneverA(i, k)+ A(k, j) < A(i, j) during
the computation. As FW and APSP are essentially performing the same computation,
the discovered shortest path is guaranteed to be a path with minimal length. However,
they may find different, yet equal in length, paths in the presence of multipleshortest
paths for a source-destination pair. This is due to possiblydifferent schedule of path
computation.

Recursive formulations of APSP have been presented by many researchers over
the years [21, 22, 23]. The connection to semiring matrix multiplication was shown
by Aho et al. [12], but they did not present a complete algorithm. Ours is a modified
version of the algorithm of Tiskin [23] and R-Kleene algorithm [21]. Especially, the
in-place nature of the R-Kleene algorithm helped us avoid expensive global memory to
global memory data copying. As the algorithm makes use of matrix multiplication as a
subroutine, it has a much higher data reuse ratio while having asymptotically the same
operation count.

The correctness of the recursive algorithm has been formally proven in various
ways before [21, 22]. Here we present a simpler proof based onalgebraic paths. As
in Aho et al. [12], we partition the set of vertices intoV1 = {v1, ..., vn/2} and V2 =

{vn/2+1, ..., vn}. SubmatrixA11 represents the edges withinV1, submatrixA12 the edges
from V1 to V2, submatrixA21 the edges fromV2 to V1, and submatrixA22 the edges
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Figure 4: An example path inA∗11

within V2.
Now, consider the paths inA∗11. They can either travel withinV1 only or move from

V1 to V2 following an edge inA12, and then come back toV2 through an edge inA21,
possibly after traveling withinV2 for a while by following edges inA22. The regular
expression for the latter path isA12A∗22A21. This partial path can be repeated a number
of times, possibly going through different vertices each time. An example path fromv
to w is shown in Figure 4. The complete regular expression becomes

A∗11 = (A11 | A12A∗22A21)
∗. (3)

On the other hand, the regular expression we get after the recursive algorithm ter-
minates is

A∗11 = A∗11 | (A
∗
11A12(A22 | A21A∗11A12)

∗A21A∗11). (4)

These two regular expressions define the same language, hence represent the same
set of paths [13]. By converting these regular expressions into deterministic finite au-
tomata (DFA), and minimizing them [24], we see that both havethe same minimum-
state DFA shown in Figure 5. Since the minimum-state DFA is unique for a language,
this proves that the algorithm computes the correct set of paths.

It is also possible to implement this algorithm in a blocked iterative way as previ-
ously done for transitive closure [25]. The percentage of work done iteratively (without
using matrix multiplication) is the same, and corresponds to the block diagonal part of
the matrix. However, the multiplications in the blocked algorithm are always between
matrices of sizeB×B, whereB is the blocking factor. This is potentially a limiting fac-
tor on GPUs because multiplication tends to get drasticallyfaster as matrices get bigger
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Figure 5: Minimum-state DFA for the path expressions inA∗11, starting state isq0

(less than 20 GFlops/s when N=64 versus 200 GFlops/s when N=1024) [5]. With the
recursive formulation, on the other hand, more work can be done during multiplication
of large matrices.

Furthermore, the recursive algorithm does fewer kernel launches than the block it-
erative one. The block iterative algorithm launchesO((N/B)3) kernels for matrix multi-
plications andO(N/B) kernels for computing closures ofB× B blocks on the diagonal.
On the other hand, at each level of the recursion tree, the recursive algorithm launches
6 kernels for matrix multiplications, and does 2 recursive calls. This makes a total
of only O(N/B) kernel launches because the height of the recursion tree islg (N/B),
and the number of kernel launches doubles at each level ({6,12,24, ...,6(N/B)}). The
O((N/B)2) factor of improvement can be quite significant, as kernel launches incur
significant overhead in CUDA.

One important feature of our implementation is that it is performed in place, over-
writing the input with the output without constraining the order of loops in the ma-
trix multiplication. For the matrix multiply-add operations A22 ← A22 ⊕ A21A12 and
A11 ← A11 ⊕ A12A21, there are no issues of correctness. However, for other multipli-
cations of the formB ← BA or B ← AB, the order of evaluation (whether it is an
ijk loop or an kji loop) matters on a general semiring. This isbecause updating the
output automatically updates the input, and the algorithm will now use a different input
for the rest of the computation. As proved by D’Alberto and Nicolau [21], this is not
a problem as long as the semiring is idempotent andA is a closure. The intuition is
that if the algorithm prematurely overwrites its input, this just makes the algorithm find
shortest paths quicker. In other words, it speeds up the information dissemination, but
the correctness is preserved thanks to idempotence.

Note that four of the six multiplications at any level of the recursion tree are of the
form B ← BA or B ← AB. In other words, they perform multiply instead of multiply-
add operations. UsingB ← B + BA or B ← B + AB would be equally correct, but
unnecessary. Remember that the cost of staying in a vertex iszero, i.e.,A(i, i) = 0.
ConsiderB ← AB: If B contains a pathvi ⇒ v j before the operation,AB generates a
cost-equivalent pathvi ⇒ vi ⇒ v j and safely overwritesB.



3. GPU Computing Model with CUDA

More and more applications that traditionally run on the CPUare now being reim-
plemented to run on the GPU, a technique called general-purpose computing on graph-
ics processing units (GPGPU). Both Nvidia and AMD offer programming interfaces for
making GPGPU accessible to programmers who are not experts in computer graph-
ics [26, 27]. Nvidia’s Compute Unified Device Architecture (Cuda) offers a higher
level C-like API, whereas AMD’s Close-to-Metal (CTM) allows the programmers to
access lower levels of hardware. As opposed to CTM, the Cuda platform is unified in
the sense that it has no architectural division for vertex and pixel processing.

3.1. GPU Programming

The new generation of GPUs are basically multithreaded stream processors. They
offer tremendous amounts of bandwidth and single-precision floating point arithmetic
computation rates. In stream processing, a single data parallel function (kernel) is exe-
cuted on a stream of data, and that is exactly how the Cuda programming model works.
A Cuda program is composed of two parts: A host (CPU) code thatmakes kernel calls,
and a device (GPU) code that actually implements the kernel.The host code is concep-
tually a serial C program, but the device code should be massively parallel in order to
harness the power of the GPU.

The fundamental building block of Nvidia 8 and 9 series is thestreaming multi-
processors (SMs), sometimes called the GPU chips. Each SM consists of 8 streaming
processors (cores), but only one instruction fetch/decode unit. This implies that all 8
cores must simultaneously execute the same instruction. This is why divergence in the
device code should be avoided as much as possible. The memoryhierarchy consists
of multiple levels. Each SM has 8192 registers and 16KB on-chip shared memory,
which is as fast as registers provided that bank conflicts areavoided. A high-latency
(200-300 cycles) off-chip global memory provides the main storage for the application
on the GPU. Part of the off-chip memory, called the local memory, is used for storing
variables that are spilled from registers.

A kernel is executed by many threads on the GPU. These threadsare organized as
a grid of thread blocks, which are batches of threads that cancooperate/communicate
through on-chip shared memory and synchronize their execution. Each thread block is
executed by only one SM, but each SM can execute multiple thread blocks simultane-
ously.

The main scheduling unit in Cuda is awarp, a group of 32 threads from the same
thread block. All threads in a warp execute the same instruction, and execution of an
arithmetic instruction for the whole warp takes 4 clock cycles. The number of active
warps in a block is an important factor in tolerating global memory access latency.

3.2. Experiences and Observations

Some limitations exist for the device code. For example, recursion and static vari-
ables are not allowed. These limitations do not apply to the host code, as it is just a
regular C code running on the CPU. In fact, recursion in the host code is a powerful



technique, since it naturally separates the recursion stack from the floating-point inten-
sive part of the program. Although recursive divide-and-conquer algorithms are nat-
urally cache efficient [28], they have traditionally not achieved their fullperformance
due to the overheads associated with recursion. We do not have such a limitation with
CUDA because the recursion stack, which is on the CPU, does not interfere with the
kernel code on the GPU.

Code optimization on a GPU is a tedious job with many pitfalls. Performance on
a GPU is often more fragile than performance on a CPU. It has been observed that
small changes can cause huge effects on the performance [4]. For example, in the
optimized GEMM routine of Volkov [5], each thread block is 16× 4 and each thread
uses 32 registers. This allows 8192/32 = 256 threads and 256/64 = 4 thread blocks
can simultaneously be active on each SM. As there are two warps per thread block and
it takes 4 cycles to execute an instruction for the whole warp, a latency of 8× 4 = 32
cycles can be completely hidden. In the case that an extra variable is required, the
compiler can either choose to spill it out to local memory andkeep the register count
intact, or increase the register usage per thread by one. In the latter case, the number of
active thread blocks decreases to 3. This introduces a 25% reduction in parallelism, but
the former option may perform worse if the kernel has few instructions because access
to a local variable will introduce one-time extra latency of200-300 cycles. Whichever
option is chosen, it is obvious that performance is fragile:by just adding one extra line,
it is possible to drastically slow down the computation.

Another pitfall awaiting the programmer is bandwidth optimizations. In Cuda, peak
bandwidth can only be achieved through memory coalescing, i.e., by making consecu-
tively numbered threads access consecutive memory locations. One can heavily under-
utilize the GPU bandwidth by not paying attention to memory coalescing. However,
the way memory coalescing works is quite counter-intuitiveto a multicore program-
mer. Assume that one wants to scan a 16× N matrix stored in row-major order. On
an SMP system with 16 cores, the most bandwidth-friendly wayis to let each proces-
sor scan a different row of the matrix; in this case, each processor makes atmostN/B
cache misses, which is optimal. On an Nvidia GPU, on the otherhand, this will create
multiple memory accesses per warp since these threads do notaccess contiguous range
of memory addresses. An example withN = 8 is shown in Figure 6. However, if
the matrix were stored in column-major order, having each thread scan a different row
would be optimal on an Nvidia GPU. This is because memory accesses at each step
would be coalesced into a single access by the NVCC compiler [29]. Consequently,
the right programming practices for achieving high bandwidth are quite different for
the GPU than for traditional parallel programming.

As a result, we advocate the use of optimized primitives as much as possible on
the GPU. Harris et al. provide an excellent optimized scan primitive with Cuda and
encourage its use as a building block for implementing parallel algorithms on Nvidia
GPUs [30]. Here, we advocate the use of matrix-matrix multiplication as an important
primitive, not only for solving systems of linear equations, but also for graph computa-
tions. In terms of performance, matrix multiplication has been claimed to be unsuitable
to run on GPUs due to the lack of sufficient bandwidth [31]. The new generation GPUs,
however, offer a tremendous bandwidth of more than 100 GB/s. Moreover, alternate
implementations that are not bandwidth bound achieved close to peak performance [5].
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Figure 6: Stride-1 access per thread (row-major storage)

It would be wise to take advantage of such an efficient primitive whenever possible.

4. Implementation and Experimentation

4.1. Experimental Platforms

We ran our GPU code on an Nvidia GeForce 8800 Ultra with Cuda SDK 1.1 and
GCC version 4.1. The graphics card driver installed in our system is Nvidia Unix
x86 64 kernel module 169.09. The GeForce 8800 Ultra has 768 MB DRAM, a core
clock of 612 MHz, a stream processor clock of 1.5 GHz, a memoryclock of 1080 MHz,
and an impressive bandwidth of 103.7 GB/s. It consists of 16 SMs, each containing 8
cores, making up a total of 128 cores. Each core can perform a multiply-add operation
in a single cycle, which accounts for two floating-point operations (Flops). Therefore,
it offers a peak multiply-add rate of 2× 1.5 × 128 = 384 GFlops/s (not counting the
extra MUL operation that cores can issue only under certain circumstances).

For comparison, we ran our CPU experiments in three different settings:

1. Serial C++ code on Intel Core 2 Duo T2400 1.83 Ghz with 1 GB RAM running
Windows XP. Two cores share a 2 MB L2 Cache.

2. Serial C++ code on AMD Opteron 8214 2.2 Ghz with 64 GB RAM running Linux
kernel 2.6.18. Each core has a private 1 MB L2 cache.

3. Parallel Cilk++ code on a Numa machine (Neumann) with 64 GB RAM, and 8
dual-core Opteron processors clocked at 2.2 Ghz.

4.2. Implementation Details

We implemented both the recursive and the iterative algorithm on the GPU using
Cuda. For the recursive algorithm, we experimented with twodifferent versions: one
that uses a simple GEMM kernel, and one that uses the optimized GEMM routine of
Volkov [5]. When reporting experimental results, we call thelatterrecursive optimized.
Both recursive codes implement the same algorithm given in Figure 3. Our recursive



Cuda code is freely available athttp://gauss.cs.ucsb.edu/~aydin/apsp_cuda.
html.

Our iterative APSP implementation uses a logical 2D partitioning of the whole ad-
jacency matrix. Such a decomposition was previously employed by Jenq and Sahni on
a hypercube multiprocessor [32], and found to be more effective than 1D partitioning.
However, keep in mind that there is no explicit data partitioning, only a logical map-
ping of submatrices to thread blocks. Host code invokes the kerneln times, where each
thread block does a rank-1 update to its submatrix per invocation. An initial snapshot
of the execution is illustrated in Figure 7 from the viewpoint of (2,2) thread block.

k=1

k=1

A(2,2)

Figure 7: A shapshot from the execution of the iterative algorithm

Our serial iterative and recursive implementations run on the CPU as references.
The iterative implementation is the standard implementation of FW, as shown in Fig-
ure 1. The recursive implementation is based on our recursive formulation shown in
Figure 3. The recursive implemention stops the recursion when the submatrices com-
pletely fit into L1-cache to achieve better results.

Our reference parallel implementation runs on Neumann, a Numa machine with a
total of 16 processor cores (8 dual-core 2.2 Ghz Opterons). We used Cilk++ [33] to
parallelize our code, which enabled speedups up to 15x.

4.3. Performance Results

Timings for our APSP implementations on Cuda are given in Table 1. Please note
the orders of magnitude difference among implementations.

Among our reference implementations, the best CPU performance is obtained on
the Intel Core 2 Duo, even though the processor had a slower clock speed than the
Opteron. We attribute this difference to the superior performance of MS Visual Stu-
dio’s C++ compiler. Full listings of timings obtained on two different CPUs and var-
ious compilers can be found in Appendix A. Table 2 shows the speedup of various
GPU implementations with respect to the best CPU performance achieved for the given
number of vertices. The results are impressive, showing up to 480x speedups over our
reference CPU implementation. Using an iterative formulation, only a modest 3.1x
speedup is achieved for relatively small inputs.

Figure 8 shows a log-log plot of running times of 5 different implementations.
Iterative CPU and recursive CPU are timings obtained by our serial code running on



Table 1: GPU timings on GeForce 8800 Ultra (in milliseconds)

Num. of Vertices Iterative Recursive Recursive Optimized
512 2.51× 102 1.62× 101 6.43× 100

1024 2.42× 103 1.00× 102 2.44× 101

2048 4.60× 104 7.46× 102 1.41× 102

4096 4.13× 105 5.88× 103 1.01× 103

8192 5.47× 106 5.57× 104 7.87× 103

Table 2: Speedup on 8800 Ultra w.r.t. the best CPU implementation

Num. of Vertices Iterative Recursive Recursive Optimized
512 3.1 48.1 121.4
1024 3.0 73.4 301.5
2048 1.3 79.6 420.7
4096 1.2 81.5 473.2
8192 0.7 67.7 479.3

Intel Core 2 Duo. For the rest of this section, we will be referring to the recursive
optimized code as our best GPU code.

Although all of the APSP algorithms scale asn3, the observed exponent of the re-
cursive GPU implementation turned out to be slightly different than theoretical values.
To reveal that, we performed a least-squares polynomial data fit on the log-log data.
The input size(|V |) - running time(t) relationship is of the formt = c|V |n. This can be
converted to lgt = lg c + n lg |V |, on which we can do linear data fitting. The differ-
ence shows that in practice the performance is heavily affected by the memory traffic,
not just the number of arithmetic operations performed. Theobserved exponents and
constants are reported in Table 3.

Our best GPU implementation still outperforms the parallelized CPU code by a
factor of 17-45x, even on 16 processors. Timings are listed in Table 4.

Table 3: Observed exponents and constants for the asymptotic behaviour of our
APSP implementations with increasing problem size

t = c|V |n
CPU (Intel Core 2 Duo) GPU (GeForce 8800 Ultra)

Iterative Recursive Iterative Recursive Recur. Optimized

Exponent (n) 3.02 3.23 3.62 2.94 2.59
Constant (c) 5.5× 10−6 1.4× 10−6 3.6× 10−8 1.5× 10−7 4.7× 10−7
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Figure 8: Log-log plot of absolute running times

4.4. Comparison with Earlier Performance Results

We compare the performance of our code with two previously reported results. One
is an automatically generated, highly optimized serial program running on a 3.6 Ghz
Pentium 4 CPU [17]. The other is due to Harish and Narayanan ona GPU platform
very similar to ours [34]. Our GeForce 8800 Ultra is slightlyfaster than the GeForce
8800 GTX used by Harish and Narayanan, so we underclocked ourGPU to allow a
direct comparison in terms of absolute values.

On the GPU, Harish and Narayanan implemented two variants ofAPSP: one that
uses the FW algorithm and one that runs Dijkstra’s single source shortest paths (SSSP)
algorithm for every vertex. For sparse graphs withm = O(n), the latter is theoretically

Table 4: Performance comparison of our best (optimized recursive) GPU imple-
mentation with parallel Cilk++ code running on Neumann, using all 16 cores

Num. of Vertices Best GPU (secs) Parallel CPU (secs) GPU Speedup
512 0.00643 0.113 17.5×
1024 0.0244 0.708 29×
2048 0.141 5.146 36.5×
4096 1.01 40.36 40×
8192 7.87 354.9 45×
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Figure 9: Comparison of different GPU implementations on 8800 GTX settings

faster than both the FW algorithm and our recursive formulation in the classical RAM
model of computation [12]. It runs inO(n2 lg n+ nm) time using Fibonacci heaps [35].

As seen in Figure 9, our recursive implementation significantly outperforms both
their FW implementation (H&N APSP) and Dijkstra based implementation (H&N
SSSP) when implemented on a GPU. The running times for the H&NSSSP code are
observed for randomly generated Erdős-Ŕenyi graphs with an average vertex degree of
6. The running times of the other two implementations are notsensitive to sparsity.
When timing our algorithm, we underclocked our GPU’s clocks down to the speed
of 8800 GTX for a head-to-head comparison. Due to the adjacency matrix represen-
tation, our algorithm runs on graphs of at most 8192 vertices. Therefore, the H&N
SSSP implementation is currently more favorable for large sparse graphs, although it
lags behind in terms of raw speed. We plan to implement an out-of-core version of
our algorithm for larger graphs. The asymptotic behavior (the slope of the curve) of
the H&N SSSP implementation is also favorable but the test graphs used by them are
extremely sparse, which helps the SSSP implementation whose complexity depends on
the sparsity of the input.

The performance results for our iterative algorithm, givenin Section 4.3, agree
with the 2x-3x speedup over a CPU implementation achieved byH&N APSP. That
implementation was also limited to 4096 vertices, while ours extends to 8192 with
only a slowdown over the CPU implementation. Our best APSP code is faster than
H&N APSP by a factor of 35-75x.

Comparing our results with the timings reported by Han et al.for the optimized
code obtained using their auto generation tool Spiral [17],we also see significant



speedups achieved by our best (optimized recursive) GPU implementation. Our com-
parisons are against their vectorized code (typically 4-5xfaster than scalar code), and
we see speedups up to 28x against Pentium 4, and 42x against Athlon 64. A detailed
comparison can be found in Table 5. Those results also show that the GPU imple-
mentation scales better with increasing problem size, because the speedup we get over
Spiral increases as the problem size increases.

Table 5: Comparisons of our best GPU implementation with the timingsreported
for Han et al. ’s auto generation tool Spiral

Num. of Vertices
GFlops/s Speedup of GeForce

GeForce 8800 Pentium 4 Athlon 64Pentium 4 Athlon 64
512 38.6 5.08 3.17 7.6x 12.2x
1024 82.0 5.00 2.77 16.4x 29.6x
2048 113.5 4.78 2.73 23.7x 41.6x
4096 126.7 4.47 2.96 28.3x 42.8x

4.5. Scalability and Resource Usage

In this section, we try to identify the bottlenecks in our implementation in terms
of resource usage and scalability. By using the NVIDIA Coolbits utility, we tweaked
the frequencies of both the GPU core clock and the memory clock. The results reveal
that our recursive implementation is not limited by the memory bandwidth to global
GPU DRAM. For this implementation, the timings and GFlops/s rates with different
clock rates are given in Table 6. When the memory clock is fixed,the slowdown of
the computation closely tracks the slowdown of the GPU core clock (0-50% with in-
crements of 12.5%). On the other hand, when the GPU core clockis fixed, little slow-
down is observed when we underclock the memory clock. Coolbits reported the default
clock speeds of 8800 Ultra as 648 Mhz for cores, and 1152 Mhz for memory, which are
slightly different than the values reported in NVIDIA factsheets.

The peak rate observed was 130 GFlops/s for |V | = 8192, compared to the theoret-
ical peak of 384 GFlops. However, the theoretical peak counts 2 Flops for each fused
multiply-add operation, which is not available on the tropical semiring our algorithm
operates on. Therefore, the actual theoretical peak in the absence of fused multiply-
add operations is 192 GFlops. Our implementation achieves more than 67% of that
arithmetic peak rate for APSP.

The iterative implementation, on the other hand, is observed to be completely band-
width bound. Even when the GPU cores are underclocked to half, no slowdown was
observed. Underclocking the memory to half, however, slowed down the computation
by exactly a factor of two. Exact timings can be seen in Figure7. We conclude that
the iterative formulation is putting too much stress on GPU memory bandwidth, con-
sequently not harnessing the available computation power of the GPU. This is indeed
expected, because the iterative formulation accessesO(n2) data and doesO(n2) work in
every iteration. The recursive algorithm, on the other hand, does almost all of its work



Table 6: Scalability of our optimized recursive GPU implementation. We
tweaked core and memory clock rates using Coolbits.

|V | = 4096 GPU Clock Memory Clock Time (ms) GFlops/s Slowdown (%)
Default values 648 1152 1028.3 124.4 -

Memory
clock fixed at
1152 Mhz

567 1152 1190.8 107.5 13.6
486 1152 1362.9 93.9 24.5
405 1152 1673.1 76.5 38.5
324 1152 2093.7 61.1 50.8

GPU core
clock fixed at
648 Mhz

648 1008 1036.2 123.5 0.7
648 864 1047.3 122.2 1.8
648 720 1096 116.8 6.1
648 576 1124.9 113.8 8.5

Table 7: Scalability of our iterative GPU implementation. We tweaked core and
memory clock rates using Coolbits.

|V | = 4096 GPU Clock Memory Clock Time (ms) Slowdown (%)
Default values 648 1152 417611.4 -

Core clock halved 324 1152 418845.7 0.3
Memory clock halved 648 576 856689.7 51.2

in matrix multiplications, which accessO(n2) data for doingO(n3) work. Therefore, it
clearly has better locality of reference.

As it was not possible to disable a subset of GPU cores in the NVIDIA 8800, we
do not report any scalability results with increasing number of processors.

4.6. Power and Economic Efficiency

Power efficiency is becoming an important consideration when comparing differ-
ent architectures [36]. The Green500 list ranks supercomputers according to their
Flops/Watts×sec (or Flops/Joule) ratio. In this section, we compare the power effi-
ciency of different architures for the APSP problem, using power specs of the manu-
facturer’s equipment (in Thermal Watts)

Nvidia reports a peak power consumption of 175 Watts for its GeForce 8800 Ultra
video card. Our dual-core Opteron (model number 8214) is reported to consume a peak
power of 95 Watts, but we are using only a single core of it during serial computation.
The machines used in the reported timings of automatically tuned CPU implementa-
tions are Pentium 4 (model number 560) and Athlon 64 (model 4000+). They consume
115 and 89 Watts, respectively. The Intel Core Duo T2400, themost power efficient
CPU in this comparison, has a maximum power consumption of only 31 Watts even
when both cores are active.

This comparative study should be considered very preliminary, because we are not
running the same code in every architecture. The GPU code is assumed to use 175+



Table 8: Efficiency comparison of different architectures (running various codes),
values in MFlops/Watts×sec (or equivalently MFlops/Joule)

|V |
Nvidia GPU Athlon Pentium 4 Core 2 Duo Neumann (Opteron)

Best Cuda code Spiral Code Reference FW Cilk++ (p=16)

512 173 35.6 44.1 19.1 2.9
1024 368 31.1 43.7 17.4 3.7
2048 510 30.6 41.5 17.3 4.1
4096 569 33.2 38.8 17.2 4.2

95/2 = 222.5 Watts as it also uses one of the CPU cores to assist the computation. This
is also a rough estimate as it is likely that when one core is idle, the whole processor’s
power consumption is more than half of its maximum. However,our rationale is that it
is possible to use the other core to perform the same computation on a different input.

The results, outlined in Table 8, show that the Nvidia Cuda implementation is not
only powerful, but also efficient. The closest competitor is the auto generated Spi-
ral [17] code that runs on Pentium 4. Note that Pentium 4 is nota particularly power
efficient processor. Therefore, it is plausible that an auto generated code on more power
efficient hardware would get closer to the efficiency of the GPU. A couple of factors
contribute to the inefficiency of Neumann. The most important one being that the
Opterons we use are not high-efficiency (HE) versions, but rather high-performance
Opterons. A single Opteron core in Neumann consumes more than three times the
power that is consumed by Core 2 Duo, while still giving worseperformance in this
particular problem.

Looking at the timings are listed in Table 4, the economic efficiency of the GPU
is also clear. At the time of writing, the processors of our 8-way Opteron server is
priced about 7x the price of Nvidia GPUs we have been using. Given that the GPU
implementation runs about 17-45x faster, we see Flops/Dollar ratio of the GPU is up
to 119-315x better than an 8-way server. These statements are by no means conclusive
as they are based on APSP performance only.

5. Conclusions and Future Work

We have considered the efficient implementation of Gaussian elimination based
algorithms on the GPU. Choosing the right algorithm that efficiently maps to the un-
derlying hardware has always been important in high-performance computing. Our
work shows that it is even more important when the hardware inquestion is a GPU.
Our proof-of-concept implementation runs more than two orders of magnitude faster
than a simple porting of the most popular algorithm to the GPU. The key to perfor-
mance was to choose an algorithm that has good locality of reference and makes the
most use of optimized kernels.

We made extensive comparisons with our reference implementations on single pro-
cessor and shared memory multiprocessor systems, as well aswith previously reported



results obtained on various CPUs and GPUs. Future work includes identifying and
implementing crucial kernels that are likely to speed up a large class of applications.
Specifically, we are working on implementing an efficient sparse matrix-matrix multi-
plication algorithm on the GPU, which is to be used as a building block for many graph
algorithms [37, 38].
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[37] A. Buluç, J. R. Gilbert, Challenges and advances in parallel sparse matrix-matrix
multiplication, in: ICPP ’08: Proc. of the Intl. Conf. on Parallel Processing, Port-
land, Oregon, USA, 2008, pp. 503–510.
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Appendix A. Additional Timing Results

Table 9 shows the timings obtained on Intel Core 2 Duo, using MS Visual Studio
2003’s C++ compiler. For small inputs (|V | ≤ 1024), the recursive implementation
performs better due to its cache friendliness. For larger inputs, however, the overhead
of recursion starts to dominate the running time. We have also experimented with the
Boost Graph Library’s Floyd-Warshall implementation [39]but found it to be consis-
tently slower than our implementations. This might be due tothe overheads coming
from the genericity of Boost. Therefore, we excluded its running times from our plots
in the main text.

Table 9: Serial timings on Intel Core 2 Duo (in milliseconds)

Num. of Vertices Iterative Recursive Boost
512 8.43× 102 7.81× 102 1.37× 103

1024 7.40× 103 7.35× 103 1.16× 104

2048 5.94× 104 7.98× 104 9.19× 104

4096 4.79× 105 7.20× 105 7.27× 105

8192 3.77× 106 5.82× 106 N.A.

In Table 10, we list the performance of our reference implementations, compiled
both with GCC and Intel C/C++ compiler version 9.1 (ICC). Although Intel’s com-
piler consistently outperformed GCC, its performance still lags behind the performance
achieved by MS Visual Studio on Intel.

Table 10: Serial timings on Opteron (in milliseconds)

Num. of Vertices
Iterative Recursive

GCC ICC GCC ICC

512 1.30× 103 9.90× 102 1.60× 103 1.14× 103

1024 1.07× 104 8.31× 103 1.34× 104 9.74× 103

2048 8.41× 104 6.41× 104 1.32× 105 1.03× 105

4096 6.66× 105 5.03× 105 1.24× 106 1.00× 106

8192 N.A. 3.94× 106 N.A. 1.58× 107


