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Abstract

We consider the computation of shortest paths on GraphiceBsing Units (GPUS).
The blocked recursive elimination strategy we use is appleto a class of algorithms
(such as all-pairs shortest-paths, transitive closurmLahdecomposition without piv-
oting) having similar data access patterns. Using theaitlsghortest-paths problem as
an example, we uncover potential gains over this class afriéhgns. The impressive
computational power and memory bandwidth of the GPU make #tiractive plat-
form to run such computationally intensive algorithms.h&ligh improvements over
CPU implementations have previously been achieved foretlatgorithms in terms of
raw speed, the utilization of the underlying computatiaeaburces was quite low. We
implemented a recursively partioned all-pairs shortesh® algorithm that harnesses
the power of GPUs better than existing implementations. dlternate schedule of
path computations allowed us to cast almost all operatiottsmatrix-matrix multi-
plications on a semiring. Since matrix-matrix multiplicet is highly optimized and
has a high ratio of computation to communication, our immatation does not $ier
from the premature saturation of bandwidth resources &atiite algorithms do. By
increasing temporal locality, our implementation runs enbran two orders of magni-
tude faster on an NVIDIA 8800 GPU than on an Opteron. Our wookides evidence
that programmers should rethink algorithms instead ofctliygorting them to GPU.

Key words. All-pairs shortest paths, Gaussian elimination, graghpoacessing unit,
semiring, matrix multiplication, graph algorithm, shat@ath, linear algebra

1. Introduction

The massively parallel nature of GPUs makes them capabléelufiyg theoret-
ically much higher GFlops rates than current state-ofatie€PUs. GPU perfor-
mance also grows much faster than CPU performance due tmbped explicit paral-
lelism. The amount of computational power to be harvestsdilsp attracted the high-
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performance computing (HPC) community, and we have seely s@entific applica-
tions successfully implemented with significant perforeggains on the GPU [1, 2].

Implementing HPC applications to run on a GPU requires figit expertise,
even with the recently introduced C-like APIs such as Nvédiauda platform [3].
The key to performance is to hide the data access latency \apchanany threads
on the fly. The performance is usually fragile and requiresfchcraftmanship from
the programmer’s side. It is up to the programmer to make thaethe registers
and other levels of cache are neither underutilized nor-puessured. Several papers
are devoted to the issue of achieving the right balance togf@hal performance on
GPUs [4, 5], relying on novel programming techniques thatreut necessarily intuitive
to the existing HPC programmer.

An important class of algorithms with triple nested loopdiah will be subse-
quently mentioned as Gaussian Elimination (GE) based ithgos, have very similar
data access patterns. Examples include LU decomposititroutipivoting, Cholesky
factorization, all-pairs shortest paths (APSP), and ftamesclosure. The similarity
among those problems has led researchers to approach tlemmified manner. For
example, the Gaussian Elimination Paradigm of ChowdhudyR&amachandran pro-
vides a cache-oblivious framework for these problems [6ihis paper, we specifically
focus on the APSP problem because it usually operates otegingcision floating
point data, making it suitable to current generation GPUs tl@ contrary, factor-
izations such as LU and Cholesky require double precisighnaetic that was not
available on the GPUs until very recently (with AMD Fire&tne 9170 and Nvidia
GeForce GTX 280). Even now, the double precision perforraasd-8 times slower
than single precision, and the limited global memory of eatrgeneration GPUs dis-
courage the use of double precision floating point numbeusthErmore, numerical
LU decomposition without pivoting is unstable [7] at bestnfiay not even exist), and
pivoting strategies on the GPU are beyond the scope of tpisrpsolkov and Demmel
did an excellent job of implementing LU, QR, and Choleskytdaizations on the GPU,
albeit in single precision [5]. It is worth noting that evdrough our implementation
computes only the distance version of the APSP problem,dossible to obtain the
actual minimal paths, at the cost of doubling the memory irequents, by keeping a
predecessor matrix.

Our two main contributions in this paper are:

1. Recursive partitioning is used as a tool to expressfferdint schedule of path
computations that allows extensive use of highly optimizedrix-matrix opera-
tions. Specifically, we use matrix multiplication on semgs as a building block
for GE based algorithms. By doing so, we increase data tycathich is even
more important for high performance computing on the GPW tivathe CPU

2. As a proof of concept, we provide affieient implementation of the APSP al-
gorithm on the GPU that is up to 480x faster than our refer&fee implemen-
tation, and up to 75x faster than an existing GPU implemantain a similar
architecture.

Locality of reference has always been an issue in algoritlesigth, and it will
be even more important with GPUs. This is because streanegsocs, such as GPUSs,



achieve éiciency through locality [8]. Our work highlights the imparice of recursion
as a technique for automatically creating locality of refere.

As minor contributions, we give an alternate (arguably $arproof of correctness
based on path expressions for the recursively partitionB&R algorithm. On the
GPU, we compare iterative, and recursive versions of theesagorithm and provide
insights into their performance ftéirence through micro benchmarks. Therefore, we
provide evidence that Level 3 BLAS [9] routines on semiricgs be used to speed
up certain graph algorithms. Finally, we comparfetent CPUs and GPUs on their
power dficiency in solving this problem.

The remainder of this paper is organized as follows. SeQiaescribes the al-
gorithms based on block-recursive elimination, startiogrf the well-known Gaussian
Elimination procedure and using it as an analogy to explmiokarecursive elimination
on other algebraic structures. Most specifically, it shoaw block-recursive elimina-
tion can be used to solve the all-pairs shortest-paths @mobSection 3 is devoted to
GPU programming on the Cuda platform, showinfiidulties and important points to
achieve high performance on GPUs. Section 4 describes qleinentation and eval-
uation strategies, and reports on the results of our exeaitsn Section 5fers some
concluding remarks.

2. Algorithms Based on Block-Recursive Elimination

Gaussian elimination is used to solve a system of lineartesaAx = b, whereA
is ann x n matrix of codficients,x is a vector of unknowns, artalis a vector of con-
stants. Recursive blocked LU factorization is dfiogent way of performing Gaussian
elimination on architectures with deep memory hierarcfli®s11]. This is mostly due
to its extensive use of matrix-matrix operations (Level 343 [9]) that are optimized
for the underlying architecture. Létand its factord. andU be partitioned as

A1 A
A1 Ax

L11 Uir Up

U2

A= 1)

Loy L2

Then, the block-recursive LU decomposition without pimgtcan be written as

L11,U11 «<LU(A11)
Uz «L11\Ar (2)
Loy «Az1/Un

L2z, Uz «LU(Az2 — L21U1p).

In this pseudocodd,U is the recursive call to the function itself,and / denote
triangular solve operations with multiple right hand sidestrix division on the left
and on the right, in MrLaB® notation).

LU factorization operates on the field of real numbers, bet$ame algorithm
can be used to solve a number of graph problems, albeit usitifexent algebra.
Specifically, closed semirings provide a general algelstmiccture that can be used to



solve a number of path problems on graphs [12, 13]. A semhiagjall the properties
of aring, except that there might be elements without anteednverse. One practical
implication is that fast matrix multiplication algorithntisat use additive inverses, such
as the Strassen algorithm [14] and the Coppersmith-Wirnbgigorithm [15], do not
apply to matrices over semirings.

A closed semiring is formally denoted b§,®, ®, 0, 1), whered and® are binary
operations defined on the sawvith identity elements 0 and 1 respectively. Fletcher [16]
gives a complete definition of a closed semiring. Two impursemirings used in this
work are theBoolean semiring, formally defined as{(, 1}, v, A,0,1) and thetropi-
cal semiring, formally defined asK*, min, +, o, 0). A closed semiring is said to be
idempotent if a® a = afor all a € S. Although idempotence of the semiring is not
a requirement for the solution of path problems on graphk [hé correctness of our
in-place algorithms relies on idempotence. Both the Baogsaniring and the tropical
semiring are idempotent, as minf) = aforallae R*,and0v0=0,1v 1= 1.

2.1. The All-Pairs Shortest-Paths Problem

The all-pairs shortest-paths (APSP) is a fundamental gpapblem. Given a di-
rected graplG = (V, E) with verticesV = {vi, Vs, ..., Vp} and edge& = {ey, e, ..., en},
the problem is to compute the length of the shortest path frota v; for all (vi, v;)
pairs. APSP corresponds to finding the matrix closéire= > 20 A = ST A =
| ® Aa ... ® A" on the tropical semiring. Note that we were able to avoid tioblems
with the infinite sum by converting it to a finite sum, beca#é€ = A" fori > 0 in
any idempotent semiring.

APSP is the focus of this paper among the set of GE based #garidue to its
practical importance and the lack of fast implementatiomsh® GPU. All the algo-
rithms discussed in this paper take the adjacency matokthe graph, wheré\(i, j)
represents the length of the edge- v;, as the input. They outp*, whereA*(i, j)
represents the length of the shortest path fwpto v;. Edge weights can be arbitrary
(positive, negative, or zero), but we assume that there aneegative cycles in the
graph. Also, the cost of staying at the same vertex is zexgA(i, i) = 0. If not, we
can delete any edge of the forA{i,i) # O as it will certainly not contribute to any
shortest path. This is because shortest paths are simple thbee are no negative
cycles.

The standard algorithm for solving the APSP problem is tloydHWarshall (FW)
algorithm. The pseudocode for the FW algorithm, in standextétion and in linear
algebra notation, are given in Figures 1 and 2. It is espgaiall-suited for dense
graphs due to it®©(n®) complexity. It is a dynamic programming algorithm that eon
sists of a triply nested loop similar to matrix multiplicati. In fact, computing the
APSP problem is computationally equivalent to computirgggtoduct of two matrices
on a semiring [12]. However, the order of the loops cannothmnged arbitrarily as
in the case of matrix multiplication. In the linear algebemse, the algorithm com-
putes the outer product of theh row and thekth column, and does rank-1 updates
on the whole matrix, fok = 1,2, ...,n. The order of the outer product updates cannot
be changed, but one is free to compute the outer product iroadgr. This means
that thek-loop should be the outermost loop, and the other loops cdrebé inter-
changed. Although the added constraint on the order of Ibgkers some of the loop-



A RN = FW(A : RVN)

1 fork«— OtoN-1

2 dofori« OtoN-1

3 dofor j <« OtoN-1

4 do A(i, j) « min(A(, ), A, k) + Ak, J))
5 A< A

Figure 1: FW algorithm in the standard notation

A RN = Fw(A : RNVN)

1 fork<—OtoN-1

2 doA—Aa A K ®AK,:) >> Algebra on the (min;) semiring
3 A<A

Figure 2: FW algorithm in linear algebra notation

interchange optimizations that are applied to matrix rplittation, automatic program
generators for the FW algorithm have been shown to provideittable speedups [17].

For sparse graphs, Johnson’s algorithm [18], which runksD#&’s single-source
shortest paths algorithm from every vertex (after somenpegssing that lets the algo-
rithm run on graphs having edges with negative weights)rabgbly the algorithm of
choice for an implementation on the CPU. However, as we dstrate in Section 4,
the GE based algorithm clearly outperforms both the FW #lgorand Johnson’s al-
gorithm when implemented on the GPU.

For unweighted graphs, it is possible to embed the semirtgthe ring of inte-
gers and use a fast, sub-cubic matrix multiplication athamisuch as Strassen’s [14].
For an undirected and unweighted graph, Seidel [19] giv@$M(n) Ig n) algorithm,
whereM(n) is the time to multiply twon x n matrices on the ring of integers. This
elegant algorithm repeatedly squares the adjacency nudttixe graph. However, it
is not currently known how to generalize Seidel’s algorittonweighted or directed
graphs [20].

2.2. Recursive In-Place APSP Algorithm

The closure of a matrix can be computed using an algorithnilagino recursive
Gaussian elimination without pivoting. It is guaranteetetoninate on a closed semir-
ing like the tropical semiring. The only subroutine of thigaithm is matrix multi-
plication on a semiring. Tha-by-n adjacency matrix is recursively partitioned into
four equal-sized/2-by-n/2 submatrices as before; the pseudocode for the algorithm
is shown in Figure 3. We use juxtapositiohR) to denote the multiplication o and
B on the semiringg is the threshold after which the algorithm performs itexafr\W



A RN = APSPA : RN<N)

1 ifN<gB
2 then A — FW(A) > Base case: perform iterative FW serially
3 else
A A
4 A= Aor Az
5 A11 — APSP@\]_]_)
6 Arp — AjiArn
7 Aoy — AgiArr
8 Agz — Ao ® Az1Ar2
9 Aco — APSPA,))
10 A21 — A22A21
11 A]_z — A12A22
12 Arg — A1 ® AroAor

Figure 3: Pseudocode for recursive in-place APSP

serially instead of recursing further. The algorithm doesrequiren to be even. Ih
is odd, the same decomposition in (1) works witii2| and[n/2].

Both the original FW implementation given in Figures 1 andg 2vall as the recur-
sive algorithm given in Figure 3 can be easily extended taiakthe actual minimal
paths. In this case, an additional integer mditiaf predecessor vertices is maintained.
Initially, T1(i, j) < i for all i. It is updated whenever a previously unknown path with
shorter length is discovered, i.&l(i, j) « kwheneverA(i, k) + A(k, j) < A(, j) during
the computation. As FW and APSP are essentially perfornfiagsame computation,
the discovered shortest path is guaranteed to be a path witmai length. However,
they may find diferent, yet equal in length, paths in the presence of mulsiptatest
paths for a source-destination pair. This is due to posgllifgrent schedule of path
computation.

Recursive formulations of APSP have been presented by nessarchers over
the years [21, 22, 23]. The connection to semiring matrixtiplitation was shown
by Aho et al. [12], but they did not present a complete algonit Ours is a modified
version of the algorithm of Tiskin [23] and R-Kleene algbrit [21]. Especially, the
in-place nature of the R-Kleene algorithm helped us avokasive global memory to
global memory data copying. As the algorithm makes use ofiratultiplication as a
subroutine, it has a much higher data reuse ratio while lgeagymptotically the same
operation count.

The correctness of the recursive algorithm has been foynpativen in various
ways before [21, 22]. Here we present a simpler proof basealgabraic paths. As
in Aho et al. [12], we partition the set of vertices iMG = {vi,...,Vy2} andVy =
{Vn/2+1, ---» Vn}. SubmatrixAq; represents the edges withify, submatrixA;, the edges
from Vy to V,, submatrixA;; the edges fronV, to Vi, and submatridd,, the edges



Figure 4. An example path iA],

within V.

Now, consider the paths i;,. They can either travel withi, only or move from
V; to V; following an edge inA;,, and then come back ¥, through an edge id,1,
possibly after traveling withifv, for a while by following edges i\,,. The regular
expression for the latter pathA5.A5,A21. This partial path can be repeated a number
of times, possibly going throughfééerent vertices each time. An example path from
tow is shown in Figure 4. The complete regular expression besome

Al = (A AAS A1) (3

On the other hand, the regular expression we get after theesige algorithm ter-
minates is

Al1 = Al (AL A12(A22 | A21AL A1) A1AT ). (4)

These two regular expressions define the same languages represent the same
set of paths [13]. By converting these regular expressiottsdeterministic finite au-
tomata (DFA), and minimizing them [24], we see that both higseesame minimum-
state DFA shown in Figure 5. Since the minimum-state DFA igjua for a language,
this proves that the algorithm computes the correct setthispa

It is also possible to implement this algorithm in a blockentative way as previ-
ously done for transitive closure [25]. The percentage akvdone iteratively (without
using matrix multiplication) is the same, and corresponds¢ block diagonal part of
the matrix. However, the multiplications in the blockedaithm are always between
matrices of sizé3 x B, whereB is the blocking factor. This is potentially a limiting fac-
tor on GPUs because multiplication tends to get drasti¢adiier as matrices get bigger
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Figure 5: Minimum-state DFA for the path expression&\ip, starting state i

(less than 20 GFlops when N=64 versus 200 GFlopgswhen N=1024) [5]. With the
recursive formulation, on the other hand, more work can medluring multiplication
of large matrices.

Furthermore, the recursive algorithm does fewer kerneldaas than the block it-
erative one. The block iterative algorithm launckégN/B)®) kernels for matrix multi-
plications andD(N/B) kernels for computing closures Bfx B blocks on the diagonal.
On the other hand, at each level of the recursion tree, thesige algorithm launches
6 kernels for matrix multiplications, and does 2 recursiedisc This makes a total
of only O(N/B) kernel launches because the height of the recursion triggh§ B),
and the number of kernel launches doubles at each |8lZ 24, ...,6(N/B)}). The
O((N/B)>?) factor of improvement can be quite significant, as kernehthes incur
significant overhead in CUDA.

One important feature of our implementation is that it ispened in place, over-
writing the input with the output without constraining theder of loops in the ma-
trix multiplication. For the matrix multiply-add operatie Ay, «— Az & Ax1A12 and
A1« A1 @ ApoA2, there are no issues of correctness. However, for otheiiptiult
cations of the formB <« BA or B « AB, the order of evaluation (whether it is an
ijk loop or an kji loop) matters on a general semiring. Thibécause updating the
output automatically updates the input, and the algorithitmew use a diferent input
for the rest of the computation. As proved by D’Alberto ang®au [21], this is not
a problem as long as the semiring is idempotent Arigl a closure. The intuition is
that if the algorithm prematurely overwrites its input sthist makes the algorithm find
shortest paths quicker. In other words, it speeds up therm@Eton dissemination, but
the correctness is preserved thanks to idempotence.

Note that four of the six multiplications at any level of trezursion tree are of the
form B < BA or B « AB. In other words, they perform multiply instead of multiply-
add operations. Using <« B+ BA or B « B+ AB would be equally correct, but
unnecessary. Remember that the cost of staying in a vertexds i.e.,A(i,i) = 0.
ConsiderB < AB: If B contains a patly; = v; before the operatiorAB generates a
cost-equivalent patih = v; = v; and safely overwriteB.



3. GPU Computing M odel with CUDA

More and more applications that traditionally run on the GR&now being reim-
plemented to run on the GPU, a technique called generabparpomputing on graph-
ics processing units (GPGPU). Both Nvidia and AMfBeo programming interfaces for
making GPGPU accessible to programmers who are not expecsnputer graph-
ics [26, 27]. Nvidia’s Compute Unified Device Architecturéuda) dfers a higher
level C-like API, whereas AMD’s Close-to-Metal (CTM) allewthe programmers to
access lower levels of hardware. As opposed to CTM, the Cladfopn is unified in
the sense that it has no architectural division for vertekgirel processing.

3.1. GPU Programming

The new generation of GPUs are basically multithreadedustigrocessors. They
offer tremendous amounts of bandwidth and single-precisiatifiip point arithmetic
computation rates. In stream processing, a single datdlgddtenction (kernel) is exe-
cuted on a stream of data, and that is exactly how the Cudagroging model works.
A Cuda program is composed of two parts: A host (CPU) codentizéies kernel calls,
and a device (GPU) code that actually implements the kefimed.host code is concep-
tually a serial C program, but the device code should be welggparallel in order to
harness the power of the GPU.

The fundamental building block of Nvidia 8 and 9 series is $heaming multi-
processors (SMs), sometimes called the GPU chips. Each &biste of 8 streaming
processors (cores), but only one instruction fatelode unit. This implies that all 8
cores must simultaneously execute the same instructias.igtvhy divergence in the
device code should be avoided as much as possible. The ménevaychy consists
of multiple levels. Each SM has 8192 registers and 16KB ap-shared memory,
which is as fast as registers provided that bank conflictaap@ed. A high-latency
(200-300 cycles) f-chip global memory provides the main storage for the apfibn
on the GPU. Part of thefibchip memory, called the local memory, is used for storing
variables that are spilled from registers.

A kernel is executed by many threads on the GPU. These thegadsganized as
a grid of thread blocks, which are batches of threads thatoaperatecommunicate
through on-chip shared memory and synchronize their ei@cutach thread block is
executed by only one SM, but each SM can execute multiplathibocks simultane-
ously.

The main scheduling unit in Cuda isnarp, a group of 32 threads from the same
thread block. All threads in a warp execute the same instmicand execution of an
arithmetic instruction for the whole warp takes 4 clock egcl The number of active
warps in a block is an important factor in tolerating globammory access latency.

3.2. Experiences and Observations

Some limitations exist for the device code. For exampleyngon and static vari-
ables are not allowed. These limitations do not apply to & bode, as it is just a
regular C code running on the CPU. In fact, recursion in th&t bode is a powerful



technique, since it naturally separates the recursioik &tam the floating-point inten-
sive part of the program. Although recursive divide-andepeer algorithms are nat-
urally cache #icient [28], they have traditionally not achieved their fpérformance
due to the overheads associated with recursion. We do netswh a limitation with
CUDA because the recursion stack, which is on the CPU, doemteofere with the
kernel code on the GPU.

Code optimization on a GPU is a tedious job with many pitfalerformance on
a GPU is often more fragile than performance on a CPU. It has lobserved that
small changes can cause hudkeets on the performance [4]. For example, in the
optimized GEMM routine of Volkov [5], each thread block is £ and each thread
uses 32 registers. This allows 8132 = 256 threads and 2364 = 4 thread blocks
can simultaneously be active on each SM. As there are twosyzpthread block and
it takes 4 cycles to execute an instruction for the whole waratency of 8 4 = 32
cycles can be completely hidden. In the case that an extrablaris required, the
compiler can either choose to spill it out to local memory &adp the register count
intact, or increase the register usage per thread by onke llatter case, the number of
active thread blocks decreases to 3. This introduces a 2836tien in parallelism, but
the former option may perform worse if the kernel has fewrircttons because access
to a local variable will introduce one-time extra latency260-300 cycles. Whichever
option is chosen, it is obvious that performance is fradilejust adding one extra line,
it is possible to drastically slow down the computation.

Another pitfall awaiting the programmer is bandwidth op#iations. In Cuda, peak
bandwidth can only be achieved through memory coalesciagby making consecu-
tively numbered threads access consecutive memory losatidne can heavily under-
utilize the GPU bandwidth by not paying attention to memarsglescing. However,
the way memory coalescing works is quite counter-intuitivea multicore program-
mer. Assume that one wants to scan ax1l§ matrix stored in row-major order. On
an SMP system with 16 cores, the most bandwidth-friendly isdg let each proces-
sor scan a dierent row of the matrix; in this case, each processor make®stN/B
cache misses, which is optimal. On an Nvidia GPU, on the dthed, this will create
multiple memory accesses per warp since these threads docexs contiguous range
of memory addresses. An example wkh= 8 is shown in Figure 6. However, if
the matrix were stored in column-major order, having eackdth scan a dierent row
would be optimal on an Nvidia GPU. This is because memoryssaat each step
would be coalesced into a single access by the NVCC com@fr [Consequently,
the right programming practices for achieving high bandkwiare quite dierent for
the GPU than for traditional parallel programming.

As a result, we advocate the use of optimized primitives ashhas possible on
the GPU. Harris et al. provide an excellent optimized scamifive with Cuda and
encourage its use as a building block for implementing peralgorithms on Nvidia
GPUs [30]. Here, we advocate the use of matrix-matrix miid@pion as an important
primitive, not only for solving systems of linear equatiphst also for graph computa-
tions. In terms of performance, matrix multiplication hagh claimed to be unsuitable
to run on GPUs due to the lack offeigient bandwidth [31]. The new generation GPUS,
however, @fer a tremendous bandwidth of more than 100$BMoreover, alternate
implementations that are not bandwidth bound achieve@dtmpeak performance [5].
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Figure 6: Stride-1 access per thread (row-major storage)

It would be wise to take advantage of such #iceent primitive whenever possible.

4. Implementation and Experimentation

4.1. Experimental Platforms

We ran our GPU code on an Nvidia GeForce 8800 Ultra with Cudi $02 and
GCC version 4.1. The graphics card driver installed in owteay is Nvidia Unix
x86.64 kernel module 169.09. The GeForce 8800 Ultra has 768 MB MR core
clock of 612 MHz, a stream processor clock of 1.5 GHz, a merolagk of 1080 MHz,
and an impressive bandwidth of 103.7 GBIt consists of 16 SMs, each containing 8
cores, making up a total of 128 cores. Each core can performtipig-add operation
in a single cycle, which accounts for two floating-point apigms (Flops). Therefore,
it offers a peak multiply-add rate of>*21.5 x 128 = 384 GFlopg (not counting the
extra MUL operation that cores can issue only under cerfadnimstances).

For comparison, we ran our CPU experiments in thr@ewtint settings:

1. Serial G-+ code on Intel Core 2 Duo T2400 1.83 Ghz with 1 GB RAM running
Windows XP. Two cores share a 2 MB L2 Cache.

2. Serial G-+ code on AMD Opteron 8214 2.2 Ghz with 64 GB RAM running Linux
kernel 2.6.18. Each core has a private 1 MB L2 cache.

3. Parallel Cilk-+ code on a Numa machine (Neumann) with 64 GB RAM, and 8
dual-core Opteron processors clocked at 2.2 Ghz.

4.2. Implementation Details

We implemented both the recursive and the iterative algaribn the GPU using
Cuda. For the recursive algorithm, we experimented with dff@rent versions: one
that uses a simple GEMM kernel, and one that uses the optinG&MM routine of
Volkov [5]. When reporting experimental results, we call errecursive optimized.
Both recursive codes implement the same algorithm giverigare 3. Our recursive



Cuda code is freely available®ttp: //gauss. cs.ucsb.edu/~aydin/apsp_cuda.
html.

Our iterative APSP implementation uses a logical 2D partitig of the whole ad-
jacency matrix. Such a decomposition was previously enguldyy Jenq and Sahni on
a hypercube multiprocessor [32], and found to be mdi@céve than 1D partitioning.
However, keep in mind that there is no explicit data panmitig, only a logical map-
ping of submatrices to thread blocks. Host code invokeshned{n times, where each
thread block does a rank-1 update to its submatrix per iri@taAn initial snapshot
of the execution is illustrated in Figure 7 from the viewgaih (2, 2) thread block.

k=1

k=1 I—l» A(2,2)

Figure 7: A shapshot from the execution of the iterative atgm

Our serial iterative and recursive implementations runten@PU as references.
The iterative implementation is the standard implemeoratif F\W, as shown in Fig-
ure 1. The recursive implementation is based on our reaifsimulation shown in
Figure 3. The recursive implemention stops the recursioenthe submatrices com-
pletely fit into L1-cache to achieve better results.

Our reference parallel implementation runs on Neumann, mamnachine with a
total of 16 processor cores (8 dual-core 2.2 Ghz Opteron®).u¥éd Cilk-+ [33] to
parallelize our code, which enabled speedups up to 15x.

4.3. Performance Results

Timings for our APSP implementations on Cuda are given irl€Tab Please note
the orders of magnitude fiierence among implementations.

Among our reference implementations, the best CPU perfocmés obtained on
the Intel Core 2 Duo, even though the processor had a slowek cpeed than the
Opteron. We attribute this fierence to the superior performance of MS Visual Stu-
dio’s C++ compiler. Full listings of timings obtained on twofléirent CPUs and var-
ious compilers can be found in Appendix A. Table 2 shows theedpp of various
GPU implementations with respect to the best CPU perforemanhieved for the given
number of vertices. The results are impressive, showing ¥B0x speedups over our
reference CPU implementation. Using an iterative formaigtonly a modest 3.1x
speedup is achieved for relatively small inputs.

Figure 8 shows a log-log plot of running times of Sfdient implementations.
Iterative CPU and recursive CPU are timings obtained by etiakcode running on



Table 1: GPU timings on GeForce 8800 Ultra (in milliseconds)

Num. of Vertices| Iterative Recursive  Recursive Optimized
512 251x 107 162x 10" 6.43x 10°
1024 242x10° 1.00x 107 2.44x 10"
2048 460x 10 7.46x 107 1.41x 107
4096 413x10° 5.88x 10° 1.01x 10°
8192 547x 10 557x 10 7.87x 10°

Table 2: Speedup on 8800 Ultra w.r.t. the best CPU implementation

Num. of Vertices| Iterative Recursive Recursive Optimized
512 3.1 48.1 121.4
1024 3.0 73.4 301.5
2048 1.3 79.6 420.7
4096 1.2 81.5 473.2
8192 0.7 67.7 479.3

Intel Core 2 Duo. For the rest of this section, we will be rdfeg to the recursive
optimized code as our best GPU code.

Although all of the APSP algorithms scale @ the observed exponent of the re-
cursive GPU implementation turned out to be slightlffetient than theoretical values.
To reveal that, we performed a least-squares polynomial fitabn the log-log data.
The input sizgy/|) - running timef) relationship is of the fornt = c[V|". This can be
converted to Ig = Igc + nlg|V|, on which we can do linear data fitting. Thefdi-
ence shows that in practice the performance is heatligcted by the memory tfiac,
not just the number of arithmetic operations performed. dlbserved exponents and
constants are reported in Table 3.

Our best GPU implementation still outperforms the pariakel CPU code by a
factor of 17-45x, even on 16 processors. Timings are listélable 4.

Table 3: Observed exponents and constants for the asymptotic lmehaf our
APSP implementations with increasing problem size

t=gvp CPU (Intel Core 2 Duo) GPU (GeForce 8800 Ultra)
Iterative Recursive| lterative  Recursive  Recur. Optimized
Exponent ) 3.02 323 3.62 294 259
Constant€) | 55x10°% 14x10°% | 36x10°% 15x107 47x 107
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Figure 8: Log-log plot of absolute running times

4.4, Comparison with Earlier Performance Results

We compare the performance of our code with two previougigrted results. One
is an automatically generated, highly optimized seriagpam running on a 3.6 Ghz
Pentium 4 CPU [17]. The other is due to Harish and Narayanaa GfFPU platform
very similar to ours [34]. Our GeForce 8800 Ultra is slightygter than the GeForce
8800 GTX used by Harish and Narayanan, so we underclocke@&Bur to allow a
direct comparison in terms of absolute values.

On the GPU, Harish and Narayanan implemented two variard$&P: one that
uses the FW algorithm and one that runs Dijkstra’s singlecoshortest paths (SSSP)
algorithm for every vertex. For sparse graphs witk= O(n), the latter is theoretically

Table 4: Performance comparison of our best (optimized recursiv) @Gnple-
mentation with parallel Cilk+ code running on Neumann, using all 16 cores

Num. of Vertices| Best GPU (secs) Parallel CPU (secs) GPU Speedup
512 0.00643 0113 175x%
1024 0.0244 0708 2%
2048 0.141 5146 365x%
4096 101 4036 40«
8192 7.87 3549 45x
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Figure 9: Comparison of ffierent GPU implementations on 8800 GTX settings

faster than both the FW algorithm and our recursive fornnutein the classical RAM
model of computation [12]. It runs i®(n? Ig n + nm) time using Fibonacci heaps [35].

As seen in Figure 9, our recursive implementation signifigaoutperforms both
their FW implementation (H&N APSP) and Dijkstra based inmpémtation (H&N
SSSP) when implemented on a GPU. The running times for the IS&SP code are
observed for randomly generated BsdRenyi graphs with an average vertex degree of
6. The running times of the other two implementations areseaisitive to sparsity.
When timing our algorithm, we underclocked our GPU’s clocksvd to the speed
of 8800 GTX for a head-to-head comparison. Due to the ad{@ceratrix represen-
tation, our algorithm runs on graphs of at most 8192 verticEserefore, the H&N
SSSP implementation is currently more favorable for lagggrse graphs, although it
lags behind in terms of raw speed. We plan to implement arobabre version of
our algorithm for larger graphs. The asymptotic behavibe @lope of the curve) of
the H&N SSSP implementation is also favorable but the tesplys used by them are
extremely sparse, which helps the SSSP implementationerdwsaplexity depends on
the sparsity of the input.

The performance results for our iterative algorithm, giwerSection 4.3, agree
with the 2x-3x speedup over a CPU implementation achieveti&i APSP. That
implementation was also limited to 4096 vertices, whilesoaxtends to 8192 with
only a slowdown over the CPU implementation. Our best APS# ds faster than
H&N APSP by a factor of 35-75x.

Comparing our results with the timings reported by Han efalthe optimized
code obtained using their auto generation tool Spiral [\, also see significant



speedups achieved by our best (optimized recursive) GPleéimgntation. Our com-
parisons are against their vectorized code (typically 4a5xer than scalar code), and
we see speedups up to 28x against Pentium 4, and 42x agaimeh/&4. A detailed
comparison can be found in Table 5. Those results also shatthk GPU imple-
mentation scales better with increasing problem size,Usecthe speedup we get over
Spiral increases as the problem size increases.

Table 5: Comparisons of our best GPU implementation with the timirg®rted
for Han et al. 's auto generation tool Spiral

. GFlopgs Speedup of GeForce
Num. of Vertices
GeForce 8800 Pentium4 Athlon 64Pentium 4  Athlon 64
512 386 5.08 317 7.6x 122x
1024 820 5.00 277 16.4x 296x
2048 1135 478 273 23.7x 41.6x
4096 1267 447 296 28.3x 428x

4.5. Scalability and Resource Usage

In this section, we try to identify the bottlenecks in our iempentation in terms
of resource usage and scalability. By using the NVIDIA Cdslitility, we tweaked
the frequencies of both the GPU core clock and the memorkclble results reveal
that our recursive implementation is not limited by the merzandwidth to global
GPU DRAM. For this implementation, the timings and GFlepsates with dierent
clock rates are given in Table 6. When the memory clock is fixiee ,slowdown of
the computation closely tracks the slowdown of the GPU cérekc(0-50% with in-
crements of 12.5%). On the other hand, when the GPU core dddoted, little slow-
down is observed when we underclock the memory clock. Ctsaleported the default
clock speeds of 8800 Ultra as 648 Mhz for cores, and 1152 Mihmémory, which are
slightly different than the values reported in NVIDIA factsheets.

The peak rate observed was 130 GFlsger|V| = 8192, compared to the theoret-
ical peak of 384 GFlops. However, the theoretical peak c@rklops for each fused
multiply-add operation, which is not available on the tagbisemiring our algorithm
operates on. Therefore, the actual theoretical peak intiberee of fused multiply-
add operations is 192 GFlops. Our implementation achieva® ithan 67% of that
arithmetic peak rate for APSP.

The iterative implementation, on the other hand, is obsktw®e completely band-
width bound. Even when the GPU cores are underclocked to mal§lowdown was
observed. Underclocking the memory to half, however, stbd@vn the computation
by exactly a factor of two. Exact timings can be seen in Figur&\/e conclude that
the iterative formulation is putting too much stress on GPé&hmary bandwidth, con-
sequently not harnessing the available computation poiredGPU. This is indeed
expected, because the iterative formulation acce3§®3 data and doe®(n?) work in
every iteration. The recursive algorithm, on the other hao@s almost all of its work



Table 6: Scalability of our optimized recursive GPU implementatioiWe
tweaked core and memory clock rates using Coolbits.

[V =4096 | GPU Clock Memory Clock Time (ms) GFlofs Slowdown (%)

Default values 648 1152 1028.3 124.4 -

567 1152 1190.8 107.5 13.6
Memory 486 1152 1362.9 93.9 24.5
clock fixed at 405 1152 1673.1 76.5 38.5
1152 Mhz 324 1152 2093.7 61.1 50.8

648 1008 1036.2 1235 0.7
GPU core 648 864 1047.3 122.2 1.8
clock fixed at 648 720 1096 116.8 6.1
648 Mhz 648 576 1124.9 113.8 8.5

Table 7: Scalability of our iterative GPU implementation. We twedkm®re and
memory clock rates using Coolbits.

V| = 4096 \ GPU Clock Memory Clock Time (ms) Slowdown (%)
Default values 648 1152 417611.4 -
Core clock halved 324 1152 418845.7 0.3
Memory clock halved 648 576 856689.7 51.2

in matrix multiplications, which acces3(n?) data for doingd(n®) work. Therefore, it
clearly has better locality of reference.

As it was not possible to disable a subset of GPU cores in thEDNV8800, we
do not report any scalability results with increasing nundfgrocessors.

4.6. Power and Economic Efficiency

Power éficiency is becoming an important consideration when compadiffer-
ent architectures [36]. The Green500 list ranks supercoanpuaccording to their
FlopgWatts<sec (or Flopgloule) ratio. In this section, we compare the pow@r e
ciency of diferent architures for the APSP problem, using power spedseofranu-
facturer’s equipment (in Thermal Watts)

Nvidia reports a peak power consumption of 175 Watts for #s@ce 8800 Ultra
video card. Our dual-core Opteron (model number 8214) isrted to consume a peak
power of 95 Watts, but we are using only a single core of itryserial computation.
The machines used in the reported timings of automaticafted CPU implementa-
tions are Pentium 4 (model number 560) and Athlon 64 (mod@d4l They consume
115 and 89 Watts, respectively. The Intel Core Duo T2400ntbst power #icient
CPU in this comparison, has a maximum power consumption lyf hWatts even
when both cores are active.

This comparative study should be considered very prelirgjimecause we are not
running the same code in every architecture. The GPU codssiseed to use 176



Table 8: Efficiency comparison of flierent architectures (running various codes),
values in MFlopANatts<sec (or equivalently MFlog3oule)

V] Nvidia GPU | Athlon Pentium 4| Core 2 Duo | Neumann (Opteron)
Best Cuda code Spiral Code Reference FW,  Cilk++ (p=16)
512 173 356 441 191 2.9
1024 368 311 437 174 3.7
2048 510 306 415 17.3 4.1
4096 569 332 388 17.2 4.2

95/2 = 2225 Watts as it also uses one of the CPU cores to assist the catigputT his
is also a rough estimate as it is likely that when one corelés te whole processor’s
power consumption is more than half of its maximum. However,rationale is that it
is possible to use the other core to perform the same coniutat a diferent input.

The results, outlined in Table 8, show that the Nvidia Cudglé&mentation is not
only powerful, but also facient. The closest competitor is the auto generated Spi-
ral [17] code that runs on Pentium 4. Note that Pentium 4 isanmarticularly power
efficient processor. Therefore, it is plausible that an auteggad code on more power
efficient hardware would get closer to thi@ency of the GPU. A couple of factors
contribute to the iniciency of Neumann. The most important one being that the
Opterons we use are not highieiency (HE) versions, but rather high-performance
Opterons. A single Opteron core in Neumann consumes moretkiiae times the
power that is consumed by Core 2 Duo, while still giving wopseformance in this
particular problem.

Looking at the timings are listed in Table 4, the econontliciency of the GPU
is also clear. At the time of writing, the processors of ouv@y Opteron server is
priced about 7x the price of Nvidia GPUs we have been usingerGihat the GPU
implementation runs about 17-45x faster, we see Flogtar ratio of the GPU is up
to 119-315x better than an 8-way server. These statemenks/aro means conclusive
as they are based on APSP performance only.

5. Conclusions and Future Work

We have considered theheient implementation of Gaussian elimination based
algorithms on the GPU. Choosing the right algorithm thitiently maps to the un-
derlying hardware has always been important in high-perémce computing. Our
work shows that it is even more important when the hardwaiguistion is a GPU.
Our proof-of-concept implementation runs more than twoessdf magnitude faster
than a simple porting of the most popular algorithm to the GPkk key to perfor-
mance was to choose an algorithm that has good locality efeate and makes the
most use of optimized kernels.

We made extensive comparisons with our reference impleatiens on single pro-
cessor and shared memory multiprocessor systems, as wdthgsreviously reported



results obtained on various CPUs and GPUs. Future workdeslidentifying and
implementing crucial kernels that are likely to speed uprgdalass of applications.
Specifically, we are working on implementing affi@ent sparse matrix-matrix multi-
plication algorithm on the GPU, which is to be used as a hugdilock for many graph
algorithms [37, 38].
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Appendix A. Additional Timing Results

Table 9 shows the timings obtained on Intel Core 2 Duo, usiigy\Wsual Studio
2003's G++ compiler. For small inputs|{| < 1024), the recursive implementation
performs better due to its cache friendliness. For largeutsy however, the overhead
of recursion starts to dominate the running time. We have ekperimented with the
Boost Graph Library’s Floyd-Warshall implementation [28jt found it to be consis-
tently slower than our implementations. This might be duth&ooverheads coming
from the genericity of Boost. Therefore, we excluded itsning times from our plots
in the main text.

Table 9: Serial timings on Intel Core 2 Duo (in milliseconds)

Num. of Vertices| Iterative Recursive Boost
512 843x 1% 7.81x 1% 137x1C°
1024 740x10° 7.35x10° 1.16x 10
2048 594x 10" 7.98x 10" 9.19x 104
4096 479%10° 7.20x10°P 7.27x 1P
8192 377x10° 582x10° N.A.

In Table 10, we list the performance of our reference impletaigons, compiled
both with GCC and Intel @++ compiler version 9.1 (ICC). Although Intel's com-
piler consistently outperformed GCC, its performancélsiijs behind the performance
achieved by MS Visual Studio on Intel.

Table 10: Serial timings on Opteron (in milliseconds)

. Iterative Recursive
Num. of Vertices
GCC ICC GCC ICC
512 130%x10° 9.90x10? | 1.60x10° 1.14x10°
1024 1.07x10* 831x10° | 1.34x 10" 9.74x10°
2048 841x 10" 6.41x10* | 1.32x10° 1.03x10°
4096 6.66x10° 5.03x10° | 1.24x10° 1.00x 10°
8192 N.A. 3.94x 1P N.A. 1.58 x 107



