Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication

Aydin Buluc
John R. Gilbert
University of California, Santa Barbara

ICPP 2008
September 11, 2008

Support: DOE Office of Science, MIT Lincoln Labs
Reasons (pronounced “Outline”)

• Motivation?
 – Building block for many (graph) algorithms.

• Challenge?
 – Parallel scaling.

• Tools?
 – Novel work-scalable sequential kernel.
 – 2D parallel decomposition/algorithm
 – Overlapping communication with computation

• This work?
 – Comparative theoretical analysis of 1D and 2D algorithms.
 – Preliminary parallel implementation of the first 2D algorithm.
 – Challenges arising from sparsity, and ways to overcome them.
Matrices over Semirings

• Matrix multiplication \(C = AB \) (or matrix/vector):

\[
C_{i,j} = A_{i,1} \times B_{1,j} + A_{i,2} \times B_{2,j} + \cdots + A_{i,n} \times B_{n,j}
\]

• Replace scalar operations \(\times \) and \(+ \) by

\(\otimes \) : associative, distributes over \(\oplus \), identity 1

\(\oplus \) : associative, commutative, identity 0 annihilates under \(\otimes \)

• Then \(C_{i,j} = A_{i,1} \otimes B_{1,j} \oplus A_{i,2} \otimes B_{2,j} \oplus \cdots \oplus A_{i,n} \otimes B_{n,j} \)

• Examples: \((\times,+)\); \((\text{and,or})\); \((+,\min)\); . . .

• Same data reference pattern and control flow
Multiple-source breadth-first search

\[A^T \quad X \]
Multiple-source breadth-first search

\[A^T \]

\[X \] \[\rightarrow \] \[A^T X \]

Diagram:

1 - 2
4 - 5
3 - 6
7
Sparse array representation => space efficient
Sparse matrix-matrix multiplication => work efficient
Load balance depends on SpGEMM implementation
Not a panacea for the memory latency wall!
SpGEMM: Sparse Matrix \times Sparse Matrix

- Shortest path calculations (APSP)
- Betweenness centrality
- BFS from multiple source vertices
- Subgraph / submatrix indexing
- Graph contraction
- Cycle detection
- Multigrid interpolation & restriction
- Colored intersection searching
- Applying constraints in finite element computations
- Context-free parsing
Challenges of Parallel SpGEMM

- Scalable sequential kernel ($A_{ik} \times B_{kj}$)
 - Solved [IPDPS’08]
- Load balancing
 - Especially for real world graphs
- Communication costs
 - Communication to computation ratio is much higher than dense GEMM
- Updates (additions)
 - Scalar additions ≠ scalar multiplications
Standard data structure: CSC

- JC holds column pointers – size: $n+1$
- IR holds row indices – size: nnz
- NUM holds numerical values – size: nnz
1) **outer product:**

 for $k = 1:n$

 $C = C + A(:, k) * B(k, :)$

2) **inner product:**

 for $i = 1:n$
 for $j = 1:n$

 $C(i, j) = A(i, :) * B(:, j)$
3) **Column-by-column formulation:**

for \(j = 1:n \)

forall \(k \) s.t. \(B(k,j) \neq 0 \)

\[
C(:, j) = C(:, j) + A(:, k) \ast B(k, j)
\]

- Scanning \(B(:,j) \) to find the nonzero elements is sequential.
- Scanning \(A(:, k) \) for scalar*vector is sequential for each \(k \).
- But the size and the structure of \(C(:,j) \) is not known in advance and updates may be costly.
CSC Sparse Matrix Multiplication with SPA

for j = 1:n
C(:, j) = A * B(:, j)

All matrix columns and vectors are stored compressed except the SPA.
SPA (Sparse Accumulator)

- Supports efficient vector addition by allowing random access to the currently active column.
 - Dense Boolean array (BA) to determine efficiently whether an element was previously inscribed or not.
 - Dense vector of real values (RE)
 - Unordered list of indices who were previously inscribed.

- Complexity:
 - Initialize SPA, set $x = 0$: $O(n)$ // Only once
 - $x = x + \alpha y$: $O(nnz(y))$
 - Output x, reset $x = 0$: $O(nnz(x))$
Parallel 1D Algorithm

- Distribution by columns: only A needs to be communicated. (only B for distribution by rows)

- A_i refers to the n by $\frac{n}{p}$ block column that processor i owns.

- Algorithm uses the formula:
 \[C_i = C_i + A \times B_i \]

- Processor i likely to need columns from all processors to fully form C_i
 - All-to-all broadcast at once. [we don’t have space for that]
 - Multiple iterations to fully form C_i
Sparse 1D Algorithm

for all processors P_i in parallel
for $j \leftarrow 1$ to p
do
 Broadcast(A_j)
 for $k \leftarrow 1$ to N/p
do
 SPA \leftarrow Load($C_i(:,k)$)
 SPA \leftarrow SPA+ $A_j * B_{ij}(:,k)$
 $C_i(:,k)$ \leftarrow UnLoad(SPA)
 end
end

- Computation per processor is independent of p
- No speed up at all

Time spent on load/unloads of SPA are not amortized by flops

The sparsity parameter: average number of nonzeros per column/row

$$T_{comp} = \gamma(N(1 + c^2))$$

The cost of one arithmetic operation
Utopian 1D Algorithm

- Assume we found a way to amortize the cost of loads/unloads of SPA.
- It would still be **unsuitable** due to communication.
For the **dense case**, 2D scales better with the number of processors.

Likely to be same for the **sparse case**.

Parallel Efficiency:

1D Layout:

\[
\frac{1}{1 + \mathcal{O}\left(\frac{p}{n}\right)}
\]

2D Layout:

\[
\frac{1}{1 + \mathcal{O}\left(\sqrt[3]{\frac{p}{n}}\right)}
\]

Should be zero for perfect efficiency
Submatrices are *hypersparse* (i.e. \(nnz \ll n \))

\[\sqrt{p} \text{ blocks} \]

\[nnz' = \frac{c}{\sqrt{p}} \to 0 \]

Average of \(c \) nonzeros per column

Total Storage:
\[O(n + nnz) \to O(n\sqrt{p} + nnz) \]

- A data structure or algorithm that depends on the matrix dimension \(n \) (e.g. CSR or CSC) is asymptotically too wasteful for submatrices
Sequential Kernel [IPDPS 2008]

- Strictly $O(nnz)$ data structure
- Complexity independent of matrix dimension
- Outer-product formulation with multi-way merging
- Scalable in terms of the amount of work it performs.
2D Example: Sparse SUMMA

- $C_{ij} +\ = A_{ik} \ * \ B_{kj}$
- At worst doubles local storage

- Based on SUMMA (block size = n/\sqrt{p})
- Easy to generalize nonsquare matrices, etc.
Comparative Speedup of Sparse 1D & 2D

- Even utopian 1D algorithms can not scale beyond 40x
- Break-even point is around 50 processors.
Parallel efficiency of 2D algorithm?

• Parallel efficiency due to computation:
 \[E_{\text{comp}} = \frac{cN}{p + cN \log \left(\frac{c^2 N}{p} \right)} \]
 - As long as \(N \) grows linearly with \(p \) (weak scaling), this is constant at \(1/\log(c^2 N/p) \)
 - Constant but not 1

• Parallel efficiency due to latency:
 \[E_{\text{latency}} = \frac{\gamma c^2 N}{\alpha p \sqrt{p}} \]
 - \(N \) should grow on the order of \(p^{1.5} \)

• Parallel efficiency due to bandwidth:
 \[E_{\text{bw}} = \frac{\gamma c}{\beta \sqrt{p}} \]
 - Better than 1D
 - Yet, still not scalable.
SpGEMM is much harder to scale than dense GEMM.

- Both communication and computation costs increase at the same rate with increasing problem size!

Overlap communication with computation.

- As much as possible. Possible for $p<4000$

Asynchronous, one sided communication

<table>
<thead>
<tr>
<th>GASNET, ARMCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Truly one-sided) Communication layers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myrinet, Infiniband, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware supporting zero copy RDMA</td>
</tr>
</tbody>
</table>
Speedup of Asynchronous 2D

- Slightly better performance for smaller matrices
- Remember, this assumes random matrices (Erdos-Renyi)
Addressing the Load Balance (in Real-World Matrices)

- Random permutations are useful.
- Bulk synchronous algorithms may still suffer:
- Asynchronous algorithms have no notion of stages.
- Overall, no significant imbalance.

\[\text{Worst load imbalance by stage} \]
\[\text{Total A*B flops by processor} \]
Strong Scaling of Real Code

- Synchronous implementation with C++ and MPI
- Runs on TACC’s Lonestar cluster (2.66Ghz dual-core nodes)
- Good up to $p = 64$, flattens out at $p = 256$
Barriers to Scalability (pronounced “Future Work”)

• Submatrix additions ($C_{ij} += A_{ik} \times B_{kj}$)
 o We currently use scanning based merging
 o **Fast unbalanced merging** is required.

• Load-balance problem
 o We used real world matrices for testing the implementation.
 o **One-sided communication through RDMA** is required

• Extra log(p) factor in Sparse SUMMA
 o Creates extra communication costs
 o Better **overlapping communication with computation**
 o Again, solution is asynchronous implementation.
Thank You!

Questions?