Parallel breadth-first search on distributed memory systems

Aydın Buluç
Lawrence Berkeley National Laboratory

Kamesh Madduri
The Pennsylvania State University

Supercomputing, Seattle
November 17, 2011
Large graphs are everywhere

Internet structure
Social interactions

Scientific datasets: biological, chemical, cosmological, ecological, …

WWW snapshot, courtesy Y. Hyun

Yeast protein interaction network, courtesy H. Jeong
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: $\Theta(m+n)$

Graph: $G(E, V)$

E: Set of edges (size m)

V: Set of vertices (size n)
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: $\Theta(m+n)$

Current ‘frontier’ shown in red
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: \(\Theta(m+n) \)

Current ‘frontier’ shown in red
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: $\Theta(m+n)$

Current ‘frontier’ shown in red
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: $\Theta(m+n)$

Current ‘frontier’ shown in red
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: $\Theta(m+n)$

Current ‘frontier’ shown in red
Breadth-first search (BFS)

- Level-by-level graph traversal
- Serial complexity: $\Theta(m+n)$
BFS as a graph building block

- BFS is representative of communication intensive graph computations in distributed memory
- BFS is a subroutine for many algorithms
 - Betweenness centrality
 - Maximum flows
 - Connected components
 - Spanning forests
 - Testing for bipartiteness
 - Reverse Cuthill-McKee ordering
Breadth-first search on a low-diameter graph with skewed degree distribution

Performance metric: TEPS
“Traversed Edges Per Second”

- Short span (critical path)
- High parallelism (work/span)
Graph 500: implementation challenge

Performance numbers are just a snapshot in time
But the insights and conclusions are still valid today

This work
SC’11 deadline

8.2X improvement on same hardware, in one year.
Outline

- BFS overview and applications
- **BFS as sparse matrix-sparse vector multiply**
- Parallel BFS: 1D and 2D approaches
- Experimental results and insight
- Conclusions / Contributions
- Future Directions
Breadth-first search: a matrix view

- Adjacency matrix: sparse array w/ nonzeros for graph edges
- Multiply by adjacency matrix \rightarrow step to neighbor vertices
Breadth-first search: a matrix view

- Adjacency matrix: sparse array w/ nonzeros for graph edges
- Multiply by adjacency matrix → step to neighbor vertices
Breadth-first search: a matrix view

- Adjacency matrix: sparse array w/ nonzeros for graph edges
- Multiply by adjacency matrix \rightarrow step to neighbor vertices

$$A^T \ x \ A^T x \ (A^T)^2 x$$

[loops are not drawn]
BFS as sparse matrix-
sparse vector multiply
Semiring: (select, min)
from ATX to ATX
• BFS overview and applications
• BFS as sparse matrix-sparse vector multiply
• **Parallel BFS: 1D and 2D approaches.**
• Experimental results and insight
• Conclusions / Contributions
• Future Directions
Parallel BFS strategies

1. Expand current frontier (level-synchronous approach, suited for low diameter graphs)

- O(D) parallel steps
- Adjacencies of all vertices in current frontier are visited in parallel

2. Stitch multiple concurrent traversals (Ullman-Yannakakis, for high-diameter graphs)

- path-limited searches from “super vertices”
- APSP between “super vertices”
1D parallel BFS algorithm

ALGORITHM:
1. Find owners of the current frontier’s adjacency [computation]
2. Exchange adjacencies via all-to-all. [communication]
3. Update distances/parents for unvisited vertices. [computation]
Communication in 1D algorithm

Local memory references:

\[\beta_L \frac{m}{p} + \alpha_{L,n/p} \frac{n + m}{p} \]

Inverse local RAM bandwidth
Local latency on working set \(|n/p|\)

Remote communication:

\[\beta_{N,a2a(p)} \frac{m}{p} + \alpha_N p \]

All-to-all remote bandwidth with \(p\) participating processors

ALGORITHM:

1. Find owners of the current frontier’s adjacency [computation]
2. Exchange adjacencies via all-to-all. [communication]
3. Update distances/parents for unvisited vertices. [computation]
ALGORITHM:
1. Gather vertices in *processor column* [communication]
2. Find owners of the current frontier’s adjacency [computation]
3. Exchange adjacencies in *processor row* [communication]
4. Update distances/parents for unvisited vertices. [computation]
2D algorithm: Local computation

Local memory references:

\[\beta_L \frac{m}{p} + \alpha_{L,n/p_c} \frac{n}{p} + \alpha_{L,n/p_r} \frac{m}{p} \]
Submatrix storage

Submatrices are “hypersparse” (i.e. $nnz << n$)

- $nnz' = \frac{c}{\sqrt{p}} \rightarrow 0$
- Average of c nonzeros per column

Total Storage:

$O(n + nnz) \rightarrow O(n\sqrt{p} + nnz)$

- A data structure or algorithm that depends on matrix dimension n (e.g. CSR or CSC) is asymptotically too wasteful for submatrices
- Use doubly-compressed (DCSC) data structures instead.
2D hybrid parallelism

- Explicitly split submatrices to \(t \) (#threads) pieces along the rows.
- Local working set is smaller by a factor of \(\sqrt{t} \)

(not a factor of \(t \), because \(p_r \) is now a factor of \(\sqrt{t} \) smaller as well)
Outline

• BFS overview and applications
• BFS as sparse matrix-sparse vector multiply
• Parallel BFS: 1D and 2D approaches
• **Experimental results and insight**
• Conclusions / Contributions
• Future Directions
• NERSC Hopper (Cray XE6, Gemini interconnect AMD Magny-Cours)
• Hybrid: In-node 6-way OpenMP multithreading
• Graph500: Scale 32, R-MAT with edgefactor=16
NERSC Franklin (Cray XT4, Seastar interconnect AMD Budapest)

Hybrid: In-node 4-way OpenMP multithreading

Graph500: Scale 29, R-MAT with edgefactor=16
Bandwidth as a function of p

- The network parameter $\beta_{N,a2a}$ is a function of participating processors.
- Micro-benchmark imitates 2D algorithm’s communication pattern.

\[
\beta_{N,a2a}(p_c) \frac{m}{p} + \beta_{N,ag}(p_r) \frac{n}{p_c}
\]

2D

\[
\beta_{N,a2a}(p) \frac{m}{p}
\]

1D

*: Latency costs not listed
Communication breakdown (2D)

<table>
<thead>
<tr>
<th>Core count</th>
<th>Problem scale</th>
<th>Edge factor</th>
<th>BFS time (secs)</th>
<th>Allgatherv (percent.)</th>
<th>Alltoally (percent.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>27</td>
<td>64</td>
<td>2.67</td>
<td>7.0%</td>
<td>6.8%</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>16</td>
<td>4.39</td>
<td>11.5%</td>
<td>7.7%</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4</td>
<td>7.18</td>
<td>16.6%</td>
<td>9.1%</td>
</tr>
<tr>
<td>2025</td>
<td>27</td>
<td>64</td>
<td>1.56</td>
<td>10.4%</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>16</td>
<td>2.87</td>
<td>19.4%</td>
<td>9.2%</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4</td>
<td>4.41</td>
<td>24.3%</td>
<td>9.0%</td>
</tr>
<tr>
<td>4096</td>
<td>27</td>
<td>64</td>
<td>1.31</td>
<td>13.1%</td>
<td>7.8%</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>16</td>
<td>2.23</td>
<td>20.8%</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4</td>
<td>3.15</td>
<td>30.9%</td>
<td>7.7%</td>
</tr>
</tbody>
</table>

\[
\beta_{N,2a}(p_c) \frac{m}{p} + \beta_{N,ag}(p_r) \frac{n}{p_c}
\]

i. Allgather becomes the bottleneck as concurrency increases.

ii. Allgather sensitive to sparsity.
A higher diameter graph

- Union of multiple 2005 crawls of the .uk domain
- Speedup: 4X when going from 500 to 4000 cores
- Hybrid is slower since remote communication is not the bottleneck.
Conclusions / Contributions

- In-depth analysis and evaluation of all 4 combinations of parallel BFS on distributed memory

<table>
<thead>
<tr>
<th>1D Flat MPI</th>
<th>2D Flat MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D Hybrid MPI+OpenMP</td>
<td>2D Hybrid MPI+OpenMP</td>
</tr>
</tbody>
</table>

- Novel 2D hybrid approach: Up to 3.5X reduction in communication time compared to 1D
- Scaling to 40K cores on “scale-free” graphs
- A performance model that captures both local and non-local memory accesses, as well as collectives
Some future work

1- Optimal processor grid dimensions \(p = p_r \times p_c \) depends on:
 • Graph size
 • Graph density
 • Desired concurrency
 • Target architecture

Great opportunity for autotuning.

2- Performance depends heavily on collectives performance.
 • Non-torus partitions -> unpredictable performance
 • Topology aware collectives (Edgar Solomonik’s talk at 4:30 today)

3- Graph/hypergraph partitioning for reducing communication

4- Prospect of using PGAS languages