Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication using Compressed Sparse Sparse Blocks

Aydın Buluç, UCSB
Jeremy T. Fineman (MIT)
Matteo Frigo (Cilk Arts)
John R. Gilbert (UCSB)
Charles E. Leiserson (MIT & Cilk Arts)
Sparse Matrix-Dense Vector Multiplication (SpMV)

A is an **n-by-n sparse** matrix with **nnz << n²** nonzeros

Applications:

- **Iterative methods for solving linear systems:** Krylov subspace methods based on Lanczos biorthogonalization: Biconjugate gradients (BCG) & quasi-minimal residual (QMR)
- **Graph analysis:** Betweenness centrality computation
The Landscape: Where does our work fit?

Hardware specific optimizations (prefetching, TLB blocking, vectorization)

Matrix specific optimizations (permutations, index/value compression, register blocking)

Equally fast $y = Ax$ and $y = A^T x$ (simultaneously)

Plenty of parallelism (for any nonzero distribution)

This is our plane of focus!
Our parallel algorithms for \(y \leftarrow Ax \) and \(y \leftarrow A^T x \) using the new \textit{compressed sparse blocks (CSB)} layout has

- \(\Theta(\sqrt{n \lg n}) \) span, and \(\Theta(nnz) \) work,
- yielding \(\Theta(nnz/\sqrt{n \lg n}) \) parallelism.

\[\frac{\lg(n)}{nnz} = \Theta(\frac{\lg(n)}{n}) \]

![Graph showing MFlops/sec vs. Processors]

Our CSB algorithms

Serial (Naïve CSR)

Star-P (CSR+blockrow distribution)
Compressed Sparse Rows (CSR): A Standard Layout

- Stores entries in row-major order
- Uses $n \log nnz + nnz \log n$ bits of index data.
- Reading rows in parallel is easy, but columns is hard.

$n \times n$ matrix with nnz nonzeros
Parallelizing SpMV_T is hard using the standard CSR format

```c
CSR_SPMV_T(A, x, y)
for i ← 0 to n-1
  do for k ← A.rowptr[i] to A.rowptr[i+1]-1
    do y[A.colind[k]] ← y[A.colind[k]] + A.data[k] ∙ x[i]
```

1. Parallelize the outer loop?
 × Race conditions on vector y.
 a. Locking on y is not scalable.
 b. Using p copies of y is work-inefficient

2. Parallelize the inner loop?
 × Span is $\Theta(n)$, thus parallelism at most $O(nnz/n)$
Compressed Sparse Blocks (CSB)

- Store blocks in row-major order (*)
- Store entries within block in Z-morton order (*)
- For $\beta = \sqrt{n}$, matches CSR on storage.

Reading blockrows or blockcolumns in parallel is now easy.
Our algorithm uses three levels of parallelism:

1) Multiply each blockrow in parallel, each writing to a disjoint output subvector.

2) If a blockrow is “dense,” parallelize the blockrow multiplication.

3) If a single block is dense, parallelize the block multiplication.
Blockrow-Vector Multiplication

\[\beta = \sqrt{n} \]

- Divide-and-conquer based on the nonzero count, not spatial.
- Allocation & accumulation costs of temporary vectors are amortized.
- **Lemma:** For \(\beta = \sqrt{n} \), our parallel blockrow-vector multiplication has work \(\Theta(r) \) and span \(O(\sqrt{n} \lg n) \) on a \(\beta \times n \) blockrow containing \(r \geq \beta \) nonzeros.
Block-Vector Multiplication

- With Z-morton ordering, spatial division to quadrants takes \(\lg \dim \) time on a \(\dim \times \dim \) (sub)block using three binary searches.

- **Lemma**: For \(\beta = \sqrt{n} \), our parallel block-vector multiplication has work \(\Theta(r) \) and span \(O(\sqrt{n}) \) on a block with \(r \) nonzeros.

For any (sub)block, first perform \(A_{00} \) and \(A_{11} \) in parallel; then \(A_{01} \) and \(A_{10} \) in parallel.

Updates on \(y \) are race-free.
Block-Vector Multiplication

- With Z-morton ordering, spatial division to quadrants takes $\lg \dim$ time on a $\dim \times \dim$ (sub)block using three binary searches.

- **Lemma**: For $\beta = \sqrt{n}$, our parallel block-vector multiplication has work $\Theta(r)$ and span $O(\sqrt{n})$ on a block with r nonzeros.

For any (sub)block, first perform A_{00} and A_{11} in parallel; then A_{01} and A_{10} in parallel.

Updates on y are race-free
Block-Vector Multiplication

- With Z-morton ordering, spatial division to quadrants takes $\lg \dim$ time on a $\dim \times \dim$ (sub)block using three binary searches.

- **Lemma:** For $\beta = \sqrt{n}$, our parallel block-vector multiplication has work $\Theta(r)$ and span $O(\sqrt{n})$ on a block with r nonzeros.

For any (sub)block, first perform A_{00} and A_{11} in parallel; then A_{01} and A_{10} in parallel.

Updates on y are race-free
Main Theorem and The Choice of β

Theorem: Our parallel matrix-vector multiplication has work $O(n^2/\beta^2 + \text{nnz})$ and span $O(\beta \lg(n/\beta) + n/\beta)$, yielding on an $n \times n$ CSB matrix containing $\text{nnz} \geq n$ nonzeros.

For $\beta = \sqrt{n}$, this yields a parallelism of $\Theta(\text{nnz}/\sqrt{n} \lg n)$.

On our test matrices, parallelism ranges from 186 to 3498.
Ax and $A^T x$ perform equally well.

4-socket dual-core 2.2GHz AMD Opteron 8214
Most test matrices had **similar performance** when multiplying by the matrix and its transpose.
Test Matrices and Performance Overview

MFlops/sec

Processors
FACT: Sparse matrix-dense vector multiplication (and the transpose) is *bandwidth limited*.

This work: motivated by *multicore/manycore* architectures where parallelism and memory bandwidth are key resources.

- Previous work mostly focused on reducing communication volume in distributed memory, often by using graph or hypergraph partitioning [Catalyurek & Aykanat ’99].

- Great optimization work for SpMV on multicore by Williams, et al.‘09, but without parallelism guarantees or multiplication with the transpose (SpMV_T).

- Blocking for sparse matrices is not new, but mostly for cache performance, not parallelism [Im et al.’04, Nishtala et al. ’07].
Good Speedup Until Bandwidth Limit

- Slowed down processors (artificially introduced extra instructions) for test to hide memory issues.
- Shows algorithm scales well given sufficient memory bandwidth.

Ran on the smallest (and one of the most irregular) test matrix
All about Bandwidth: Harpertown vs Nehalem

Intel Xeon X5460 @3.16Ghz
Dual-socket Quad-core
FSB @1333Mhz

Intel Core i7 920 @2.66Ghz
Single-socket Quad-core
Quickpath+Hyperthreading
Conclusions & Future Work

• CSB allows for efficient multiplication of a sparse matrix and its transpose by a dense vector.

Future Work:

• Does CSB work well with other computations? Sparse LU decomposition? Sparse matrix-matrix multiplication?
• For a symmetric matrix, need only store upper triangle of matrix. Can we multiply with one read (i.e., ½ the bandwidth)?

Code (in C++ and Cilk++) available from:

http://gauss.cs.ucsb.edu/~aydin/software.html
Lemma: For $\beta = \sqrt{n}$, CSB uses $n \lg \text{nnz} + \text{nnz} \lg n$ bits of index data, matching CSR.

Proof:

n blocks \Rightarrow n block pointers.

- Each block pointer uses $\lg \text{nnz}$ bits, for $n \lg \text{nnz}$ total.
- Each row (or column) offset requires $\lg \beta = \lg \sqrt{n}$ bits, for $(\text{nnz}/2) \lg n$ total.